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1 Introduction

Recent technological developments in sensor technology and computer hard-
ware have resulted in increasing quantities of data, rapidly overwhelming many
of the classical data analysis tools available. Processing these large amounts
of data has created new concerns with respect to data representation, dis-
ambiguation, and dimensionality reduction. Because information gathering
devices have only finite bandwidth, the collected data are not often exact.
For example, signals received by antenna arrays often are contaminated by
noise and other degradations. Before useful deductive science can be applied,
it is often important to first reconstruct or represent the data so that the
inexactness is reduced while certain feasibility conditions are satisfied.

Secondly, in many situations the data observed from complex phenomena rep-
resent the integrated result of several interrelated variables acting together.
When these variables are less precisely defined, the actual information con-
tained in the original data might be overlapping and ambiguous. A reduced
system model could provide a fidelity near the level of the original system. One
common ground in the various approaches for noise removal, model reduction,
feasibility reconstruction, and so on, is to replace the original data by a lower
dimensional representation obtained via subspace approximation. The use of
low-rank approximations, therefore, comes to the forefront in a wide range of
important applications. Factor analysis and principal component analysis are
two of the many classical methods used to accomplish the goal of reducing the
number of variables and detecting structures among the variables.

Often the data to be analyzed is nonnegative, and the low rank data are
further required to be comprised of nonnegative values in order to avoid con-
tradicting physical realities. Classical tools cannot guarantee to maintain the
nonnegativity. The approach of finding reduced rank nonnegative factors to
approximate a given nonnegative data matrix thus becomes a natural choice.
This is the so-called nonnegative matrix factorization (NMF) problem which
can be stated in generic form as follows:

[NMF problem]Given a nonnegative matrix A ∈ Rm×n and a positive

integer k < min{m, n}, find nonnegative matrices W ∈ Rm×k and H ∈
Rk×n to minimize the functional

f(W,H) =
1

2
‖A −WH‖2

F . (1)

The product WH is called a nonnegative matrix factorization of A, although
A is not necessarily equal to the product WH. Clearly the product WH is
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an approximate factorization of rank at most k, but we will omit the word
“approximate” in the remainder of this paper. An appropriate decision on the
value of k is critical in practice, but the choice of k is very often problem de-
pendent. In most cases, however, k is usually chosen such that k ≪ min(m, n)
in which case WH can be thought of as a compressed form of the data in A.

Another key characteristic of NMF is the ability of numerical methods that
minimize (1) to extract underlying features as basis vectors in W, which can
then be subsequently used for identification and classification. By not allowing
negative entries in W and H, NMF enables a non-subtractive combination of
parts to form a whole (Lee and Seung, 1999). Features may be parts of faces
in image data, topics or clusters in textual data, or specific absorption charac-
teristics in hyperspectral data. In this paper, we discuss the enhancement of
NMF algorithms for the primary goal of feature extraction and identification
in text and spectral data mining.

Important challenges affecting the numerical minimization of (1) include the
existence of local minima due to the non-convexity of f(W,H) in both W and
H, and perhaps more importantly the lack of a unique solution which can be
easily seen by considering WDD−1H for any nonnegative invertible matrix
D. These and other convergence related issues are dealt with in Section 3.
Still, NMF is quite appealing for data mining applications since, in practice,
even local minima can provide desirable properties such as data compression
and feature extraction as previously explained.

The remainder of this paper is organized as follows. In Section 2 we give a brief
description of numerical approaches for the solution of the nonnegative matrix
factorization problem. Fundamental NMF algorithms and their convergence
properties are discussed in Section 3. The use of constraints or penalty terms
to augment solutions is discussed in Section 4 and applications of NMF algo-
rithms in the fields of text mining and spectral data analysis are highlighted
in Section 5. The need for further research in NMF algorithms concludes the
paper in Section 6.

2 Numerical Approaches for NMF

The 1999 article in Nature by Daniel Lee and Sebastian Seung (Lee and Seung,
1999) started a flurry of research into the new Nonnegative Matrix Factoriza-
tion. Hundreds of papers have cited Lee and Seung, but prior to its publica-
tion several lesser known papers by Pentti Paatero (Paatero and Tapper, 1994;
Paatero, 1997, 1999) actually deserve more credit for the factorization’s his-
torical development. Though Lee and Seung cite Paatero’s 1997 paper on his
so-called positive matrix factorization in their Nature article, Paatero’s work is
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rarely cited by subsequent authors. This is partially due to Paatero’s unfortu-
nate phrasing of positive matrix factorization, which is misleading as Paatero’s
algorithms create a nonnegative matrix factorization. Moreover, Paatero ac-
tually published his initial factorization algorithms years earlier in (Paatero
and Tapper, 1994).

Since the introduction of the NMF problem by Lee and Seung, a great deal of
published and unpublished work has been devoted to the analysis, extension,
and application of NMF algorithms in science, engineering and medicine. The
NMF problem has been cast into alternate formulations by various authors.
(Lee and Seung, 2001) provided an information theoretic formulation based
on the Kullback-Leibler divergence of A from WH that, in turn, lead to
various related approaches. For example, (Cichocki et al., 2006) have proposed
cost functions based on Csiszár’s ϕ-divergence. (Wang et al., 2004) propose
a formulation that enforces constraints based on Fisher linear discriminant
analysis for improved determination of spatially localized features. (Guillamet
et al., 2001) have suggested the use of a diagonal weight matrix Q in a new
factorization model, AQ ≈ WHQ, in an attempt to compensate for feature
redundancy in the columns of W. This problem can also be alleviated using
column stochastic constraints on H (Pauca et al., 2006). Other approaches
that propose alternative cost function formulations include but are not limited
to (Hamza and Brady, 2006; Dhillon and Sra, 2005). A theoretical analysis
of nonnegative matrix factorization of symmetric matrices can be found in
(Catral et al., 2004).

Various alternative minimization strategies for the solution of (1) have also
been proposed in an effort to speed up convergence of the standard NMF iter-
ative algorithm of Lee and Seung. (Lin, 2005b) has recently proposed the use
of a projected gradient bound-constrained optimization method that is com-
putationally competitive and appears to have better convergence properties
than the standard (multiplicative update rule) approach. Use of certain aux-
iliary constraints in (1) may however break down the bound-constrained op-
timization assumption, limiting the applicability of projected gradient meth-
ods. (Gonzalez and Zhang, 2005) proposed accelerating the standard approach
based on an interior-point gradient method. (Zdunek and Cichocki, 2006) pro-
posed a quasi-Newton optimization approach for updating W and H where
negative values are replaced with small ǫ > 0 to enforce nonnegativity, at the
expense of a significant increase in computation time per iteration. Further
studies related to convergence of the standard NMF algorithm can be found
in (Chu et al., 2004; Lin, 2005a; Salakhutdinov et al., 2003) among others.

In the standard NMF algorithm W and H are initialized with random non-
negative values, before the iteration starts. Various efforts have focused on
alternate approaches for initializing or seeding the algorithm in order to speed
up or otherwise influence convergence to a desired solution. (Wild et al., 2003)
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and (Wild, 2002), for example, employed a spherical k-means clustering ap-
proach to initialize W. (Boutsidis and Gallopoulos, 2005) use an SVD-based
initialization and show anecdotical examples of speed up in the reduction of
the cost function. Effective initialization remains, however, an open problem
that deserves further attention.

Recently, various authors have proposed extending the NMF problem formula-
tion to include additional auxiliary constraints on W and/or H. For example
smoothness constraints have been used to regularize the computation of spec-
tral features in remote sensing data (Piper et al., 2004; Pauca et al., 2005).
(Chen and Cichocki, 2005) employed temporal smoothness and spatial cor-
relation constraints to improve the analysis of EEG data for early detection
of Alzheimer’s disease. (Hoyer, 2002, 2004) employed sparsity constraints on
either W or H to improve local rather than global representation of data. The
extension of NMF to include such auxiliary constraints is problem dependent
and often reflects the need to compensate for the presence of noise or other
data degradations in A.

3 Fundamental Algorithms

In this section, we provide a basic classification scheme that encompasses many
of the NMF algorithms previously mentioned. Although such algorithms can
straddle more than one class, in general they can be divided into three general
classes: multiplicative update algorithms, gradient descent algorithms, and al-
ternating least squares algorithms. We note that (Cichocki and Zdunek, 2006)
have recently created an entire library (NMFLAB) of MATLAB R© routines
for each class of the NMF algorithms.

3.1 Multiplicative Update Algorithms

The prototypical multiplicative algorithm originated with Lee and Seung (Lee
and Seung, 2001). Their multiplicative update algorithm with the mean squared
error objective function (using MATLAB array operator notation) is provided
below.
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Multiplicative Update Algorithm for NMF

W = rand(m,k); % initialize W as random dense matrix

H = rand(k,n); % initialize H as random dense matrix

for i = 1 : maxiter
(mu) H = H .* (WTA) ./ (WTWH + 10−9);
(mu) W = W .* (AHT ) ./ (WHHT + 10−9);

end

The 10−9 in each update rule is added to avoid division by zero. Lee and
Seung used the gradient and properties of continual descent (more precisely,
continual nonincrease) to claim that the above algorithm converges to a local
minimum, which was later shown to be incorrect (Chu et al., 2004; Finesso
and Spreij, 2004; Gonzalez and Zhang, 2005; Lin, 2005b). In fact, the proof
by Lee and Seung merely shows a continual descent property, which does not
preclude descent to a saddle point. To understand why one must consider two
basic observations involving the Karush-Kuhn-Tucker optimality conditions.

First, if the initial matrices W and H are strictly positive, then these matrices
remain positive throughout the iterations. This statement is easily verified by
referring to the multiplicative form of the update rules. Second, if the sequence
of iterates (W,H) converge to (W∗,H∗) and W∗ > 0 and H∗ > 0, then
∂f

∂W
(W∗,H∗) = 0 and ∂f

∂H
(W∗,H∗) = 0. This second point can be verified for

H by using the additive form of the update rule:

H = H + [H./(WTWH)]. ∗ [WT (A− WH)]. (2)

Consider the (i, j)-element of H. Suppose a limit point for H has been reached
such that Hij > 0. Then from Equation (2), we know

Hij

[WTWH]ij
([WTA]ij − [WTWH]ij) = 0.

Since Hij > 0, this implies [WTA]ij = [WTWH]ij, which implies [ ∂f

∂H
]ij = 0.

While these two points combine to satisfy the Karush-Kuhn-Tucker optimality
conditions below (Bertsekas, 1999), this holds only for limit points (W∗,H∗)
that do not have any elements equal to 0.
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W ≥ 0

H ≥ 0

(WH −A)HT ≥ 0

WT (WH− A) ≥ 0

(WH −A)HT . ∗ W = 0

WT (WH− A). ∗ H = 0

Despite the fact that, for example, Hij > 0 for all iterations, this element could
be converging to a limit value of 0. Thus, it is possible that H∗

ij = 0, in which
case one must prove the corresponding complementary slackness condition
that ∂f

∂H
(W∗,H∗) ≥ 0, and it is not apparent how to use the multiplicative

update rules to do this. Thus, in summary, we can only make the following
statement about the convergence of the Lee and Seung multiplicative update
algorithms: When the algorithm has converged to a limit point in the interior of

the feasible region, this point is a stationary point. This stationary point may

or may not be a local minimum. When the limit point lies on the boundary of

the feasible region, its stationarity can not be determined.

Due to their status as the first well-known NMF algorithms, the Lee and Se-
ung multiplicative update algorithms have become a baseline against which
the newer algorithms are compared. It has been repeatedly shown that the Lee
and Seung algorithms, when they converge (which is often in practice), are
notoriously slow to converge. They require many more iterations than alter-
natives such as the gradient descent and alternating least squares algorithms
discussed below. And the work per iteration is high. Each iteration requires
six O(n3) matrix-matrix multiplications of completely dense matrices and six
O(n2) component-wise operations. Nevertheless, clever implementations can
improve the situation. For example, in the update rule for W, which requires
the product WHHT , the small k × k product HHT should be created first.

In order to overcome some of these shortcomings, researchers have proposed
modifications to the original Lee and Seung algorithms. For example, (Gon-
zalez and Zhang, 2005) created a modification that accelerates the Lee and
Seung algorithm, but unfortunately, still has the same convergence problems.
Recently, Lin created a modification that resolves one of the convergence is-
sues. Namely, Lin’s modified algorithm is guaranteed to converge to a station-
ary point (Lin, 2005a). However, this algorithm requires slightly more work
per iteration than the already slow Lee and Seung algorithm. In addition,
Dhillon and Sra derive multiplicative update rules that incorporate weights
for the importance of elements in the approximation (Dhillon and Sra, 2005).
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3.2 Gradient Descent Algorithms

NMF algorithms of the second class are based on gradient descent methods.
We have already mentioned the fact that the above multiplicative update
algorithm can be considered a gradient descent method (Chu et al., 2004; Lee
and Seung, 2001). Algorithms of this class repeatedly apply update rules of
the form shown below.

Basic Gradient Descent Algorithm for NMF

W = rand(m,k); % initialize W

H = rand(k,n); % initialize H

for i = 1 : maxiter
H = H − ǫH

∂f

∂H

W = W − ǫW
∂f

∂W

end

The step size parameters ǫH and ǫW vary depending on the algorithm, and
the partial derivatives are the same as those shown in Section 3.1. These algo-
rithms always take a step in the direction of the negative gradient, the direction
of steepest descent. The trick comes in choosing the values for the stepsizes ǫH

and ǫW . Some algorithms initially set these stepsize values to 1, then multiply
them by one-half at each subsequent iteration (Hoyer, 2004). This is simple,
but not ideal because there is no restriction that keeps elements of the updated
matrices W and H from becoming negative. A common practice employed by
many gradient descent algorithms is a simple projection step (Shahnaz et al.,
2006; Hoyer, 2004; Chu et al., 2004; Pauca et al., 2005). That is, after each
update rule, the updated matrices are projected to the nonnegative orthant
by setting all negative elements to the nearest nonnegative value, 0.

Without a careful choice for ǫH and ǫW , little can be said about the convergence
of gradient descent methods. Further, adding the nonnegativity projection
makes analysis even more difficult. Gradient descent methods that use a simple
geometric rule for the stepsize, such as powering a fraction or scaling by a
fraction at each iteration, often produce a poor factorization. In this case, the
method is very sensitive to the initialization of W and H. With a random
initialization, these methods converge to a factorization that is not very far
from the initial matrices. Gradient descent methods, such as the Lee and
Seung algorithms, that use a smarter choice for the stepsize produce a better
factorization, but as mentioned above, are very slow to converge (if at all). As
discussed in (Chu et al., 2004), the Shepherd method is a proposed gradient
descent technique that can accelerate convergence using wise choices for the
stepsize. Unfortunately, the convergence theory to support this approach is
somewhat lacking.
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3.3 Alternating Least Squares Algorithms

The last class of NMF algorithms is the alternating least squares (ALS) class.
In these algorithms, a least squares step is followed by another least squares
step in an alternating fashion, thus giving rise to the ALS name. ALS algo-
rithms were first used by Paatero (Paatero and Tapper, 1994). ALS algorithms
exploit the fact that, while the optimization problem of Equation (1) is not
convex in both W and H, it is convex in either W or H. Thus, given one ma-
trix, the other matrix can be found with a simple least squares computation.
An elementary ALS algorithm follows.

Basic ALS Algorithm for NMF

W = rand(m,k); % initialize W as random dense matrix or use another

initialization from (Langville et al., 2006)

for i = 1 : maxiter
(ls) Solve for H in matrix equation WTW H = WTA.
(nonneg) Set all negative elements in H to 0.
(ls) Solve for W in matrix equation HHT WT = HAT .
(nonneg) Set all negative elements in W to 0.

end

In the above pseudocode, we have included the simplest method for insuring
nonnegativity, the projection step, which sets all negative elements resulting
from the least squares computation to 0. This simple technique also has a few
added benefits. Of course, it aids sparsity. Moreover, it allows the iterates some
additional flexibility not available in other algorithms, especially those of the
multiplicative update class. One drawback of the multiplicative algorithms is
that once an element in W or H becomes 0, it must remain 0. This locking of
0 elements is restrictive, meaning that once the algorithm starts heading down
a path towards a fixed point, even if it is a poor fixed point, it must continue in
that vein. The ALS algorithms are more flexible, allowing the iterative process
to escape from a poor path.

Depending on the implementation, ALS algorithms can be very fast. The
implementation shown above requires significantly less work than other NMF
algorithms and slightly less work than an SVD implementation. Improvements
to the basic ALS algorithm appear in (Paatero, 1999; Langville et al., 2006).
Most improvements incorporate sparsity and nonnegativity constraints such
as those described in Section 4.

We conclude this section with a discussion of the convergence of ALS algo-
rithms. Algorithms following an alternating process, approximating W, then
H, and so on, are actually variants of a simple optimization technique that
has been used for decades, and is known under various names such as alter-
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nating variables, coordinate search, or the method of local variation (Nocedal
and Wright, 1999). While statements about global convergence in the most
general cases have not been proven for the method of alternating variables, a
bit has been said about certain special cases (Berman, 1969; Cea, 1971; Polak,
1971; Powell, 1964; Torczon, 1997; Zangwill, 1967). For instance, (Polak, 1971)
proved that every limit point of a sequence of alternating variable iterates is
a stationary point. Others (Powell, 1964, 1973; Zangwill, 1967) prove con-
vergence for special classes of objective functions, such as convex quadratic
functions. Furthermore, it is known that an ALS algorithm that properly
enforces nonnegativity, for example, through the nonnegative least squares
(NNLS) algorithm of (Lawson and Hanson, 1995), will converge to a local
minimum (Bertsekas, 1999; Grippo and Sciandrone, 2000; Lin, 2005b). Un-
fortunately, solving nonnegatively constrained least squares problems rather
than unconstrained least squares problems at each iteration, while guarantee-
ing convergence to a local minimum, greatly increases the cost per iteration.
So much so that even the fastest NNLS algorithm of (Bro and de Jong, 1997)
increases the work by a few orders of magnitude. In practice, researchers settle
for the speed offered by the simple projection to the nonnegative orthant, sac-
rificing convergence theory. Nevertheless, this tradeoff seems warranted. Some
experiments show that saddle point solutions can give reasonable results in
the context of the problem, a finding confirmed by experiments with ALS-type
algorithms in other contexts (de Leeuw et al., 1976; Gill et al., 1981; Smilde
et al., 2004; Wold, 1966, 1975).

3.4 General Convergence Comments

In general, for an NMF algorithm of any class, one should input the fixed point
solution into optimality conditions (Chu et al., 2004; Gonzalez and Zhang,
2005) to determine if it is indeed a minimum. If the solution passes the op-
timality conditions, then it is at least a local minimum. In fact, the NMF
problem does not have a unique global minimum. Consider that a minimum
solution given by the matrices W and H can also be given by an infinite num-
ber of equally good solution pairs such as WD and D−1H for any nonnegative
D and D−1. Since scaling and permutation cause uniqueness problems, some
algorithms enforce row or column normalizations at each iteration to allevi-
ate these. If, in a particular application, it is imperative that an excellent
local minimum be found, we suggest running an NMF algorithm with several
different initializations using a Monte Carlo type approach.

Of course, it would be advantageous to know the rate of convergence of these
algorithms. Proving rates of convergence for these algorithms is an open re-
search problem. It may be possible under certain conditions to make claims
about the rates of convergence of select algorithms, or least relative rates of
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convergence between various algorithms.

A related goal is to obtain bounds on the quality of the fixed point solutions
(stationary points and local minimums). Ideally, because the rank-k SVD,
denoted by UkΣkVk, provides a convenient baseline, we would like to show
something of the form

1 − ǫ ≤ ‖A −WkHk‖
‖A− UkΣkVk‖

≤ 1,

where ǫ is some small positive constant that depends on the parameters of the
particular NMF algorithm. Such statements were made for a similar decom-
position, the CUR decomposition of (Drineas et al., 2006).

The natural convergence criterion, ‖A−WH‖F , incurs an expense, which can
be decreased slightly with careful implementation. The following alternative
expression

‖A− WH‖2
F = trace(ATA) − 2trace(HT (WTA)) + trace(HT (WTWH))

contains an efficient order of matrix multiplication and also allows the expense
associated with trace(ATA) to be computed only once and used thereafter.
Nearly all NMF algorithm implementations use a maximum number of itera-
tions as secondary stopping criteria (including the NMF algorithms presented
in this paper). However, a fixed number of iterations is not a mathematically
appealing way to control the number of iterations executed because the most
appropriate value for maxiter is problem-dependent. The first paper to men-
tion this convergence criterion problem is (Lin, 2005b), which includes alter-
natives, experiments, and comparisons. Another alternative is also suggested
in (Langville et al., 2006).

4 Application-Dependent Auxiliary Constraints

As previously explained, the NMF problem formulation given in Section 1 is
sometimes extended to include auxiliary constraints on W and/or H. This
is often done to compensate for uncertainties in the data, to enforce desired
characteristics in the computed solution, or to impose prior knowledge about
the application at hand. Penalty terms are typically used to enforce auxiliary
constraints, extending the cost function of equation (1) as follows:

f(W,H) = ‖A −WH‖2
F + αJ1(W) + βJ2(H). (3)
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Here J1(W) and J2(H) are the penalty terms introduced to enforce certain
application-dependent constraints, and α and β are small regularization pa-
rameters that balance the trade-off between the approximation error and the
constraints.

Smoothness constraints are often enforced to regularize the computed solutions
in the presence of noise in the data. For example the term,

J1(W) = ‖W‖2
F (4)

penalizes W solutions of large Frobenius norm. Notice that this term is im-
plicitly penalizing the columns of W since ‖W‖2

F =
∑

i ‖wi‖2
2. In practice, the

columns of W are often normalized to add up to one in order to maintain W

away from zero. This form of regularization is known as Tikhonov regulariza-

tion in the inverse problems community. More generally, one can rewrite (4)
as J1(W) = ‖LW‖2

F , where L is a regularization operator. Other choices than
the identity for L include Laplacian operators. Smoothness constraints can
be applied likewise to H, depending on the application needs. For example,
(Chen and Cichocki, 2005) enforce temporal smoothness in the columns of H

by defining:

J2(H) =
1

n

∑

i

‖(I− T)hT

i ‖2
2 =

1

n
‖(I − T)HT‖2

F , (5)

where n is the total number of columns in the data matrix A and T is an
appropriately defined convolution operator. The effectiveness of constraints of
the form (4) is demonstrated in Section 5, where it is shown that features of
higher quality can be obtained than with NMF alone.

Sparsity constraints on either W or H can be similarly imposed. The notion
of sparsity refers sometimes to a representational scheme where only a few
features are effectively used to represent data vectors (Hoyer, 2002, 2004). It
also appears to refer at times to the extraction of local rather than global
features, the typical example being local facial features extracted from the
CBCL and ORL face image databases (Hoyer, 2004). Measures for sparsity
include, for example, the ℓp norms for 0 < p ≤ 1 (Karvanen and Cichocki,

2003) and Hoyer’s measure, sparseness(x) =

√
n − ‖x‖1/‖x‖2√

n − 1
. The latter can

be imposed as a penalty term of the form:

J2(H) = (ω‖vec(H)‖2 − ‖vec(H)‖1)
2, (6)

where ω =
√

kn − (
√

kn − 1)γ and vec(·) is the vec operator that transforms
a matrix into a vector by stacking its columns. The desired sparseness in H is
specified by setting γ to a value between 0 and 1.
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In certain applications such as hyperspectral imaging, a solution pair (W,H)
must comply with constraints that make it physically realizable (Keshava,
2003). One such physical constraint requires mixing coefficients hij to sum
to one, i.e.,

∑
i hij = 1 for all j. Enforcing such a physical constraint can

significantly improve the determination of inherent features (Pauca et al.,
2006), when the data are in fact linear combinations of these features. Imposing
additivity to one in the columns of H can be written as a penalty term in the
form

J2(H) = ‖HTe1 − e2‖2
2, (7)

where e1 and e2 are vectors with all entries equal to 1. This is the same
as requiring that H be column stochastic (Berman and Plemmons, 1994) or
alternatively that the minimization of (3) seek solutions W whose columns
form a convex set containing the data vectors in A. Notice, however, that full
additivity is often not achieved since HTe1 ≈ e2 depending on the value of
the regularization parameter β.

Of course, the multiplicative update rules for W and H in the alternating
gradient descend mechanism of Lee and Seung change when the extended cost
function (3) is minimized. In general assuming that J1(W) and J2(H) have
partial derivatives with respect to wij and hij, respectively, the update rules
can be formulated as

W
(t)
ij =W

(t−1)
ij · (AHT )ij

(W(t−1)HHT )ij + α
∂J1(W)

∂wij

(8)

H
(t)
ij =H

(t−1)
ij · (WTA)ij

(WTWH(t−1))ij + β
∂J2(H)

∂hij

. (9)

The extended cost function is non-increasing with these update rules for suffi-
ciently small values of α and β (Chen and Cichocki, 2005; Pauca et al., 2006).
Algorithms employing these update rules belong to the multiplicative update
class described in Section 3.1 and have similar convergence issues.

In Section 5, we apply NMF with the extended cost function (3) and with
smoothness constraints as in (4) to applications in the fields of text mining
and spectral data analysis. The algorithm, denoted CNMF(Pauca et al., 2005)
is specified below for completeness.
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CNMF

W = rand(m,k); % initialize W as random dense matrix or use another

initialization from (Langville et al., 2006)

H = rand(k,n); % initialize H as random dense matrix or use another

initialization from (Langville et al., 2006)

for i = 1 : maxiter
(mu) H = H .* (WTA) ./ (WTWH + βH + 10−9);
(mu) W = W .* (AHT ) ./ (WHHT + αW + 10−9);

end

5 Sample Applications

The remaining sections of the paper illustrate two prominent applications
of NMF algorithms: text mining and spectral data analysis. In each case,
several references are provided along with new results achieved with the CNMF
algorithm specified above.

5.1 Text Mining for Email Surveillance

The Federal Energy Regulatory Commission’s (FERC) investigation of the
Enron Corporation has produced a large volume of information (electronic
mail messages, phone tapes, internal documents) to build a legal case against
the corporation. This information initially contained over 1.5 million electronic
mail (email) messages that were posted on FERC’s web site (Grieve, 2003).
After cleansing the data to improve document integrity and quality as well as
to remove sensitive and irrelevant private information, an improved version of
the Enron Email Set was created and publicly disseminated 1 . This revamped
corpus contains 517, 431 email messages from 150 Enron employee accounts
that span a period from December 1979 through February 2004 with the ma-
jority of messages spanning the three years: 1999, 2000, and 2001. Included
in this corpus are email messages sent by top Enron executives including the
Chief Executive Officer Ken Lay, president and Chief Operating Officer Jeff
Skilling, and head of trading Greg Whalley.

Several of the topics represented by the Enron Email Set relate more to the op-
erational logistics of what at the time was America’s seventh largest company.
Some threads of discussion concern the Dabhol Power Company (DPC), which
Enron helped to develop in the Indian state of Maharashtra. This company was

1 See http://www-2.cs.cmu.edu/∼enron.
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fraught with numerous logistical and political problems from the start. The
deregulation of the California energy market that led to the rolling blackouts
in the summer of 2000 was another hot topic reflected in the email messages.
Certainly Enron and other energy-focused companies took advantage of that
situation. Through its excessive greed, overspeculation, and deceptive account-
ing practices, Enron collapsed in the fall of 2001. After an urgent attempt to
merge with the Dynegy energy company failed, Enron filed for Chapter 11
bankruptcy on December 2, 2001 (McLean and Elkind, 2003).

As initially discussed in (Berry and Browne, 2005a), the Enron Email Set
is a truly heterogeneous collection of textual documents spanning topics from
important business deals to personal memos and extracurricular activities such
as fantasy football betting. As with most large-scale text mining applications,
the ultimate goal is to be able to classify the communications in a meaningful
way. The use of NMF algorithms for data clustering is well-documented (Xu
et al., 2003; Ding et al., 2005). In the context of surveillance, an automated
classification approach should be both efficient and reproducible.

5.1.1 Electronic Mail Subcollections

In (Berry and Browne, 2005a), the CNMF algorithm was used to compute the
nonnegative matrix factorization of term-by-message matrices derived from
the Enron corpus. These matrices were derived from the creation and pars-
ing of two subcollections derived from specific mail folders from each account.
In this work, we apply the CNMF algorithm with smoothness constraints
only (β = 0) on the W matrix factor to noun-by-message matrices gener-
ated by a larger (289,695 messages) subset of the Enron corpus. Using the
frequency-ranked list of English nouns provided in the British National Cor-
pus (BNC) (British National Corpus (BNC), 2004), 7, 424 nouns were previ-
ously extracted from the 289, 695-message Enron subset (Keila and Skillicorn,
2005). A noun-by-message matrix A = [Aij] was then constructed so that
Aij defines a frequency at which noun i occurs in message j. Like the matri-
ces constructed in (Berry and Browne, 2005a; Shahnaz et al., 2006), statistical
weighting techniques were applied to the elements of matrix A in order to cre-
ate more meaningful noun-to-message associations for concept discrimination
(Berry and Browne, 2005b).

Unlike previous studies (Berry and Browne, 2005a), no restriction was made
for the global frequency of occurrence associated with each noun in the result-
ing dictionary. In order to define meaningful noun-to-message associations for
concept discrimination, however, term weighting was used to generate the re-
sulting 289, 695×7, 424 message-by-noun matrix (transposed form is normally
generated as the complete dictionary cannot be fully resolved till all messages
have been parsed).
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5.1.2 Term Weighting

As explained in (Berry and Browne, 2005b), a collection of n messages indexed
by m terms (or keywords) can be represented as a m × n term-by-message
matrix A = [Aij ]. Each element or component Aij of the matrix A defines a
weighted frequency at which term i occurs in message j. In the extraction of
nouns from the 289, 695 Enron email messages, we simply define Aij = lijgi,
where lij is the local weight for noun i occurring in message j and gi is the
global weight for noun i in the email subset. Suppose fij defines be the number
of times (frequency) that noun i appears in message j, and pij = fij/

∑
j fij .

The log-entropy term weighting scheme (Berry and Browne, 2005a) used in
this study is defined by lij = log(1 + fij) and gi = 1 + (

∑

j

pijlog(pij))/ logn),

where all logarithms are base 2. Term weighting is typically used in text min-
ing and retrieval to create better term-to-document associations for concept
discrimination.

5.1.3 Observations

To demonstrate the use of the CNMF algorithm with smoothing on the W
matrix, we approximate the 7, 424 × 289, 695 Enron noun-by-message matrix
X via

A ≃ WH =
50∑

i=1

WiH
i , (10)

where W and H are 7, 424 × 50 and 50 × 289, 695, respectively, nonnegative
matrices. Wi denotes the i-th column of W, Hi denotes the i-th row of the
matrix H, and k = 50 factors or parts are produced. The nonnegativity of
the W and H matrix factors facilitates the parts-based representation of the
matrix A whereby the basis (column) vectors of W or Wi combine to ap-
proximate the original columns (messages) of the sparse matrix A. The outer
product representation of WH in Eq. (10) demonstrates how the rows of H or
Hi essentially specify the weights (scalar multiples) of each of the basis vectors
needed for each of the 50 parts of the representation. As described in (Lee and
Seung, 1999), we can interpret the semantic feature represented by a given ba-
sis vector Wi by simply sorting (in descending order) its 7, 424 elements and
generating a list of the corresponding dominant nouns for that feature. In turn,
a given row of H having n elements (i.e., Hi) can be used to reveal messages
sharing common basis vectors Wi, i.e., similar semantic features or meaning.
The columns of H, of course, are the projections of the columns (messages)
of A onto the basis spanned by the columns of W. The best choice for the
number of parts k (or column rank of W) is certainly problem-dependent or
corpus-dependent in this context. However, as discussed in (Shahnaz et al.,
2006) for standard topic detection benchmark collections (with human-curated
document clusters), the accuracy of the CNMF algorithm for document clus-
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tering degrades as the rank k increases or if the sizes of the clusters become
greatly imbalanced.

The association of features (i.e., feature vectors) to the Enron mail messages
is accomplished by the nonzeros of each Hi which would be present in the i-th
part of the approximation to A in Eq. (10). Each part (or span of Wi) can be
used to classify the messages so the sparsity of H greatly affects the diversity
of topics with which any particular semantic feature can be associated. Using
the rows of the H matrix and a threshold value for all nonzero elements, one
can produce clusters of messages that are described (or are spanned by) similar
feature vectors (Wi). Effects associated with the smoothing of the matrix H

(e.g., reduction in the size of document clusters) are discussed in (Shahnaz
et al., 2006).

In (Shahnaz et al., 2006), a gradual reduction in elapsed CPU time was ob-
served for a similar NMF computation (for a heterogeneous newsfeed collec-
tion) based on smoothing the H matrix factor. As mentioned in Section 4
and discussed in (Karvanen and Cichocki, 2003), ℓp norms for 0 < p ≤ 1
can be used to measure changes in the sparsity of either H or W. A consis-
tent reduction in ‖H‖p/‖H‖1 was demonstrated in (Shahnaz et al., 2006) for
both p = 0.5 and p = 0.1 to verify the increase in sparsity as the value of
the smoothing parameter was increased. Figure 1 illustrates the variation in
‖W‖p/‖W‖1 for p = 0.5 along with the elapsed CPU timings for computing
the NMF of the noun-by-message matrix. We note that in this study, smooth-
ing on the 50 × 289, 695 matrix H yielded no improvement in the clustering
of identifiable features and even stalled convergence of the CNMF algorithm.
Smoothing on the smaller 7, 424 × 50 matrix W did improve the cost-per-
iteration of CNMF but not in a consistent manner as α was increased. The
gain in sparsity associated with settings of α = 0.1, 0.75 did slightly reduce
the required computational time for 100 iterations of CNMF on a 3.2GHz
Intel Xeon 3.2GHz having a 1024 KB cache and 4.1GB RAM (see Figure 1).
Further research is clearly needed to better calibrate smoothing for an effi-
cient yet interpretable NMF of large sparse (unstructured) matrices from text
mining.

5.1.4 Topic Extraction

Table 1 illustrates some of the extracted topics (i.e., message clusters) as
evidenced by large components in the same row of the matrix H (or Hi)
generated by CNMF for the sparse noun-by-message Enron matrix. The terms
corresponding to the 10-largest elements of the particular feature (or part) i
are also listed to explain and derive the context of the topic. By feature, we
are referring to the i-th column of the matrix factor W or Wi in Eq. (10), of
course.
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Fig. 1. Reduction in ‖W‖p/‖W‖1 (p-norm) for p = 0.5 as the smoothing param-
eter α is increased for the nonnegative matrix factorization A = WH of the En-
ron noun-by-message matrix. Elapsed CPU times (seconds) for CNMF to produce
k = 50 features in 100 iterations are provided in parentheses.

In a perfect email surveillance world, each cluster of nouns would point to
the documents by a specific topic. Although our experiments did not produce
such results for every cluster, they did give some indication of the nature of
a message subset. With 50 clusters or features produced by CNMF from the
sparse noun-by-message matrix A, we analyzed several of the dominant (in
magnitude) nouns per feature for clues about the content of a cluster. The
initial set of nouns for tracking the topics illustrated in Table 1 was obtained
by simply ranking all nouns according to their global entropy weight gi (see
Section 5.1.2). As illustrated in Table 2, the occurrence of these higher entropy
nouns varies with changes in the smoothing parameter α which can be used to
produce sparser feature vectors Wi. Determining indicator nouns (or terms in
general) that can be used to track specific topics or discussions in electronic
messages is a critical task in surveillance-based applications.

The clusters depicted in Table 1 reflect some of the more meaningful topics
extracted from the Enron email subset. Professional football discussions were
clearly identified by the names of players (e.g., Jerome Bettis, Steve McNair,
and Marshall Faulk) and the prominent cluster of messages on the downfall of
Enron are tracked by names of the Houston law firm representing the company
(e.g., Vinson and Elkins) or Senate investigator (Joesph Lieberman). Business
ventures with firms such as Teijin and Tata Power, and negotiations between
Enron officials (e.g., Wade Cline) and foreign officials (India’s Federal Power
Minister Suresh Prabhu and Chairman of the Maharashtra State Electricity
Board Vinay Bansai) were also identified. Certainly expanding the number of
high entropy terms for tracking topics would support better (human-curated)
topic interpretations. This was evidenced by the need to track more nouns for
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the California blackout discussion trail. Keep in mind that cluster or feature
size is measured by the number of row elements in the matrix H with mag-
nitude greater than a specified tolerance (which is rowmax/10 for this study).
Adjustments to this tolerance value could make the number of messages more
manageable for inspectors.

Table 1
Six Enron clusters (topics) identified by the rows of H or H i produced by the
CNMF algorithm with smoothing on the matrix W (α = 0.1, β = 0). Exactly
k = 50 feature vectors (Wi) were generated. Several of the dominant (having values
of largest magnitude) nouns for each feature vector are listed for each selected
feature (i). Cluster size reflects the number of row elements in H i of magnitude
greater than rowmax/10.

Feature Cluster Topic Dominant

Index (i) Size Description Nouns

2 3,970 Professional Bettis, McNair,

Football McNabb, stats,

Faulk, rushing

10 6,190 California Fichera, Escondido,

Blackout biomass

13 9,234 Enron Vinson, Elkins,

Downfall destruction, scandal,

auditing, Lieberman

18 3,583 Business Teijin, Janus,

Ventures Coale, Tata,

BSES

21 4,011 India Prabhu, Cline,

Suresh, rupees,

Vinay, renegotiation

23 8,526 World Energy/ scottish, power,

Scotland ENEL, Mitsui,

vessel

5.2 Spectral Unmixing for Non-Resolved Space Object Characterization

The key problem in non-resolved space object characterization is to use spec-
tral reflectance data to gain knowledge regarding the physical properties (e.g.,
function, size, type, status change) of space objects that cannot be spatially
resolved with telescope technology. Such objects may include geosynchronous
satellites, rocket bodies, platforms, space debris, or nano-satellites. Figure 2
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Table 2
Top twenty BNC nouns by ascending global entropy weight (gi) and the correspond-
ing topics identified among the 50 features (Wi) generated by CNMF using different
values of the smoothing parameter α.

Cluster/Topic frequency per α

Noun fi gi .001 .01 .1 .25 .50 .75 1.0 Topic

Waxman 680 0.424 2 2 2 2 2 Downfall
Lieberman 915 0.426 2 2 2 2 2 Downfall
scandal 679 0.428 2 2 2 Downfall
nominee 544 0.436 4 3 2 2 2
Barone 470 0.437 2 2 2 2 Downfall
Meade 456 0.437 2 Downfall
Fichera 558 0.438 2 2 CA Blackout
Prabhu 824 0.445 2 2 2 2 2 2 India
Tata 778 0.448 2 India
rupee 323 0.452 3 4 4 4 3 4 2 India
soybean 499 0.455 2 2 2 2 2 2 2
rushing 891 0.486 2 2 2 Football
dlrs [dollars] 596 0.487 2
Janus 580 0.488 2 3 2 3 Bus. Ventures
BSES 451 0.498 2 2 2 Bus. Ventures
Caracas 698 0.498 2
Escondido 326 0.504 2 2 CA Blackout
promoters 180 0.509 2 Energy/Scots
Aramco 188 0.550 2 India
doorman 231 0.598 2

shows an artist’s rendition of a JSAT type satellite in a 36,000 kilometer high
synchronous orbit around the Earth. Even with adaptive optics capabilities,
this object is generally not resolvable using ground-based telescope technol-
ogy. For safety and other considerations in space, non-resolved space object
characterization is an important component of Space Situational Awareness.

Fig. 2. Artist rendition of a JSAT satellite. Image obtained from the Boeing Satellite
Development Center.

Spectral reflectance data of a space object can be gathered using ground-
based spectrometers and contains essential information regarding the make
up or types of materials comprising the object. Different materials such as
aluminum, mylar, paint, etc. possess characteristic wavelength-dependent ab-
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sorption features, or spectral signatures, that mix together in the spectral
reflectance measurement of an object. Figure 3 shows spectral signatures of
four materials typically used in satellites, namely, aluminum, mylar, white
paint, and solar cell.
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Fig. 3. Laboratory spectral signatures for aluminum, mylar, solar cell, and white
paint. For details see (Luu et al., 2003).

The objective is then, given a set of spectral measurements or traces of an
object, to determine i) the type of constituent materials and ii) the propor-
tional amount in which these materials appear. The first problem involves
the detection of material spectral signatures or endmembers from the spectral
data. The second problem involves the computation of corresponding propor-
tional amounts or fractional abundances. This is known as the spectral unmix-

ing problem in the hyperspectral imaging community (Chang, 2000; Keshava,
2003; Plaza et al., 2004).

A reasonable assumption for spectral unmixing is that a spectral measurement
of an object results from a linear combination of the spectral signatures of its
constituent materials. Hence in the linear mixing model, a spectral measure-
ment of an object y ≥ 0 along m spectral bands is given by y = Uv + n,
where U ≥ 0 is an m × k matrix whose columns are the spectral reflectance
signatures of k constituent materials (endmembers), v ≥ 0 is a vector of frac-
tional abundances, and n is a noise term. For n spectral measurements we
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write in block form
Y = UV + N, (11)

where now Y is the m × n data matrix whose columns are spectral measure-
ments, V is a k × n matrix of fractional abundances, and N is noise.

In this section, we apply NMF to the spectral unmixing problem. Specifically,
we minimize the extended cost function (3) with A = Y and seek column
vectors in basis matrix W that approximate endmembers in matrix U. We
then gather the best computed endmembers into a matrix B ≈ U and solve
an inverse problem to compute H ≈ V. Other authors have investigated the
use of NMF for spectral unmixing (Plaza et al., 2004). We report on the use
of smoothness constraints and the CNMF algorithm presented in Section 4 for
improved extraction of material spectral signatures.

5.3 Simulation Setup

While spectral reflectance data of space objects is being collected at various
sites, such as the Air Force Maui Optical and Supercomputing Site in Maui,
HI, publicly disseminated reflectance data of space objects is, to our knowl-
edge, not yet available. Hence, like other researchers (Luu et al., 2003), we
employed laboratory-obtained spectral signatures for the creation of simulated
data using the linear mixing model of equation (11).

More specifically, we let U = [u1u2u3u4] where ui are the spectra associated
with the four materials in Figure 3 measured in the 0.3 to 1.8 micron range,
with m = 155 spectral bands. We form the matrix of fractional abundances as
V = [V1V2V3V4], where Vi is a 4× 100 matrix whose rows vary sinusoidally
with random amplitude, frequency and phase shift as to model space object
rotation with respect to a fixed detector, but are chosen so that the ith material
spectral signature is dominant in the mixture Yi = UVi + Ni. The noise
is chosen to be 1% Gaussian, that is ‖Ni‖F = 0.01 ∗ ‖Yi‖F/‖Ri‖F where
the entries in Ri are randomly chosen from a Gaussian distribution N(0, 1).
Representative simulated spectral traces from each sub-data set Yi are shown
in Figure 4 and are consistent with simulated and real data employed in related
work (Luu et al., 2003).

5.4 Numerical Results

We first focus on the problem of endmember determination from the simulated
spectral measurements of Figure 4. To do this, we minimize cost function (3)
using algorithm CNMF given in Section 4, with A = [Y1Y2Y3Y4] and with

22



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

Wavelength, microns
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Wavelength, microns

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

Wavelength, microns
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Wavelength, microns

Fig. 4. Representative simulated spectral traces from Yi (i = 1 : 4), where i is the
dominant material in the mixture. (top-left) Y1: Aluminum. (top-right) Y2: Mylar.
(bottom-left) Y3 Solar cell. (bottom-right) Y4 White paint.

smoothness constraint (4) only in W. The regularization parameter α was set
to α = 0 (no auxiliary constraint) and α = 1 (penalize solutions W of large
Frobenius norm). For each value of α we run CNMF with 20 different starting
points and number of basis k = 6, resulting in a total of 20 candidate (local)
solutions W or a set of 120 candidate endmembers {wi}, (i = 1 : 120).

We employ an information theoretic measure to quantitatively evaluate the
performance in endmember extraction of NMF with and without smoothness
constraints. The measure of choice is Ds(uj ,wi), the symmetric Kullback-
Leibler divergence of uj with respect to wi given by

Ds(uj ,wi) = D(uj||wi) + D(uj||wi), (12)

where

D(x||z) =
∑

ℓ

x(ℓ)

‖x‖1
log(

x(ℓ)‖z‖1

z(ℓ)‖x‖1
).

For any nonnegative x and z, the symmetric Kullback-Leibler divergence sat-
isfies Ds(x, z) ≥ 0, and the smaller the value of Ds(x, z) the better the match.
Thus, for each true endmember uj with j = 1 : 4, we find the best match
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w∗ ∈ {wi} as,

uj ≈ w∗ = arg min
i
{Ds(uj ,wi)}.

The scores of the best matches found in {wi} for each of the four materials
are given in Table 3. Values in parentheses corresponds to the scores of best
matches found with NMF and no auxiliary constraints (α = 0). Notice that
in all cases the scores corresponding to CNMF with α = 1 are lower than
those obtained with no constraints at all, showing that enforcing smoothness
constraints can significantly improve the performance of NMF for feature ex-
traction.

Table 3
Kullback-Leibler divergence scores of the best matching endmembers given by

NMF with and without smoothness constraints. Values in parentheses correspond
to standard NMF (no constraints).

Input Aluminum Mylar Solar Cell White Paint

[Y1Y2Y3Y4] 0.0280 0.0659 0.0130 0.0223

(0.1137) (0.0853) (0.0161) (0.0346)

Table 4 shows the scores of the best matches obtained with CNMF when
the input data matrix to CNMF is A = Yi, rather than A = [Y1Y2Y3Y4].
Again scores corresponding to CNMF with α = 1 are generally smaller than
those obtained with standard NMF. It is interesting to note that for Y3 the
smoothness constraint enabled significantly better performance for aluminum
and mylar, at the expense of a slight loss of performance in the determination
of solar cell and white paint.

The visual quality of endmember spectra computed using CNMF with α = 1
can be appreciated in Figure 5. Notice that using the Kullback-Leibler diver-
gence measure both aluminum and mylar are well represented by the same
computed endmember spectra.

This result is not surprising as the spectral signatures of aluminum and my-
lar are quite similar (see Figure 3). This strong similarity can also be easily
observed in the confusion matrix shown in Table 5.

Next, we focus on the inverse process of computing fractional abundances given
the data matrix A = [Y1Y2Y3Y4] and computed material spectral signatures
B ≈ U. Thus we minimize

min
H

‖A − BH‖2
F , subject to H ≥ 0, (13)

where B ≈ U is formed using computed endmember spectra shown in Fig-
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Table 4
Kullback-Leibler divergence scores of the best matching endmembers given by

NMF with and without smoothness constraints. Values in parentheses correspond
to standard NMF (no constraints)

Input (dominant) Aluminum Mylar Solar Cell White Paint

Y1 (Aluminum) 0.0233 0.0124 0.4659 0.1321

(0.0740) (0.0609) (0.6844) (0.1661)

Y2 (Mylar) 0.0165 0.0063 0.4009 0.1203

(0.0615) (0.0606) (0.5033) (0.1827)

Y3 (Solar Cell) 0.0645 0.0292 0.0302 0.2863

(0.1681) (0.1358) (0.0266) (0.1916)

Y4 (White Paint) 0.0460 0.0125 0.8560 0.1735

(0.0882) (0.0571) (0.8481) (0.2845)
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Fig. 5. Plot of the best endmembers extracted using CNMF with α = 1, whose
Kullback-Leibler divergence scores appear in Table 3.

ure 5 and selected using the Kullback-Leibler divergence measure of equation
(12). We use algorithm PMRNSD (Nagy and Strakos, 2000) for the numerical
minimization of (13).

Figure 6 shows the fractional abundances calculated with PMRNSD in blue,
compared with the true fractional abundances of matrix V in red. Here alu-

25



Table 5
Confusion matrix of the four material spectra in Figure 3. The scores correspond
to Ds(ui,uj) for i = 1 : 4 and j = i : 4.

Aluminum Mylar Solar Cell White Paint

Aluminum 0 0.0209 1.2897 0.3317

Mylar - 0 1.2719 0.2979

Solar Cell - - 0 2.5781

White Paint - - - 0

minum and mylar are shown in the same plot since the same computed end-
member was selected to represent these materials. The calculated fractional
abundances for solar cell are quite good, while those for the other materials are
less accurate. Note that in all cases the relative change of fractional abundance
per observation is well represented by the calculated fractional abundances.
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Fig. 6. Fractional abundances obtained using PMRNSD with B ≈ U given in Fig-
ure 5. True fractional abundances are represented in red. The result of the approx-
imation using PMRNSD is in blue.

6 Further Improvements

In this paper, we have attempted to outline some of the major concepts related
to nonnegative matrix factorization. In addition to developing applications for
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space object identification and classification and topic detection and tracking
in text mining, several open problems with NMF remain. Here are a few of
them:

• Initializing the factors W and H. Methods for choosing, or seeding, the
initial matrices W and H for various algorithms (see, e.g., (Wild, 2002;
Wild et al., 2003; Boutsidis and Gallopoulos, 2005)) is a topic in need of
further research.

• Uniqueness. Sufficient conditions for uniqueness of solutions to the NMF
problem can be considered in terms of simplicial cones (Berman and Plem-
mons, 1994), and have been studied in (Donoho and Stodden, 2003). Algo-
rithms for computing the factors W and H generally produce local mini-
mizers of f(W,H), even when constraints are imposed. It would thus be
interesting to apply global optimization algorithms to the NMF problem.

• Updating the factors. Devising efficient and effective updating methods
when columns are added to the data matrix A in Equation (1) also ap-
pears to be a difficult problem and one in need of further research.

Our plans are thus to continue the study of nonnegative matrix factorizations
and develop further applications to spectral data analysis. Work on applica-
tions to air emission quality (Chu et al., 2004) and on text mining (Pauca
et al., 2004; Shahnaz et al., 2006) will also be continued.
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