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Abstract

This paper can be thought of as a companion paper to Van Loan’s The Ubiquitous Kronecker Product
paper (J. Comput. Appl. Math. 123 (2000) 85). We collect and catalog the most useful properties of the
Kronecker product and present them in one place. We prove several new properties that we discovered in our
search for a stochastic automata network preconditioner. We conclude by describing one application of the
Kronecker product, omitted from Van Loan’s list of applications, namely stochastic automata networks.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Stochastic automata networks (SANs) have become an increasingly important modeling tool since
the 1980s. SANs are used to e8ciently model very large Markov chains whose state space is on the
order of millions. The key to a SAN’s ability to compactly and e8ciently model such large Markov
chains lies in their extensive use of the Kronecker product operation. In order to understand SANs
and their advantages, one needs some familiarity with the Kronecker product. The ;rst half of this
paper (Section 2) is meant to provide such familiarity by collecting many of the known names,
de;nitions, and properties of the Kronecker product. In addition, three new properties pertaining to
the Kronecker product’s compatibility with generalized inverses are proven in Section 2.6. After this
theoretical introduction to the Kronecker product, we describe the practical uses of the Kronecker
product, listing several applications of the operation, ranging from image processing and generalized
spectral analysis to analysis of chess endgames and fast transform algorithms. The number of di=erent
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uses of the Kronecker product has grown recently, prompting Charlie Van Loan to call the operation
ubiquitous. His 2000 paper describes dozens of interesting applications [23]. We use the second half
of this paper (Section 4) to add one more application of the Kronecker product to Van Loan’s list:
SANs. We use examples and a discussion of the solution methods for SANs to show the Kronecker
product’s connection to SAN modeling.

2. The Kronecker product

The operation de;ned by the symbol ⊗ was ;rst used by Johann Georg Zehfuss in 1858 [5]. It
has since been called by various names, including the Zehfuss product, the Producttransformation,
the conjunction, the tensor product, the direct product and the Kronecker product. In the end, the
Kronecker product stuck as the name for the symbol and operation, ⊗.

2.1. De:nition of the Kronecker product

De�nition. The Kronecker product of AmA×nA ∈RmA×nA and BmB×nB ∈RmA×nA , written A ⊗ B, is the
tensor algebraic operation de;ned as

A ⊗ B =




a1;1B a1;2B : : : a1; nAB

a2;1B a2;2B : : : a2; nAB

...
...

. . .
...

amA;1B amA;2B : : : amA;nAB:


 :

Each ai; jB is a block of size mB × nB. A ⊗ B is of size mAmB × nAnB. For example, if

A =

(
a1;1 a1;2 a1;3

a2;1 a2;2 a2;3

)
; B =




b1;1 b1;2

b2;1 b2;2

b3;1 b3;2

b4;1 b4;2


 ;

then A ⊗ B =




a1;1b1;1 a1;1b1;2 a1;2b1;1 a1;2b1;2 a1;3b1;1 a1;3b1;2

a1;1b2;1 a1;1b2;2 a1;2b2;1 a1;2b2;2 a1;3b2;1 a1;3b2;2

a1;1b3;1 a1;1b3;2 a1;2b3;1 a1;2b3;2 a1;3b3;1 a1;3b3;2

a1;1b4;1 a1;1b4;2 a1;2b4;1 a1;2b4;2 a1;3b4;1 a1;3b4;2

a2;1b1;1 a2;1b1;2 a2;2b1;1 a2;2b1;2 a2;3b1;1 a2;3b1;2

a2;1b2;1 a2;1b2;2 a2;2b2;1 a2;2b2;2 a2;3b2;1 a2;3b2;2

a2;1b3;1 a2;1b3;2 a2;2b3;1 a2;2b3;2 a2;3b3;1 a2;3b3;2

a2;1b4;1 a2;1b4;2 a2;2b4;1 a2;2b4;2 a2;3b4;1 a2;3b4;2




.
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We also mention another Kronecker operation, the Kronecker sum, which is de;ned as the ordinary
sum of Kronecker products. The Kronecker sum, A⊕ B, is de;ned by square matrices A and B and
is given by

A ⊕ B, A ⊗ InB + InA ⊗ B;

where nA is the size of the square matrix A and nB is the size of the square matrix B.
One advantage of Kronecker products is their compact representation. Consider the linear system

Cx=d in which C can be written as the Kronecker product of two much smaller matrices, A and B.
The system (A⊗B)x=d can be solved quickly without ever forming the full matrix C =A⊗B (as is
shown in Section 3); only the smaller matrices A and B need to be stored. An iterative method such
as GMRES that uses only matrix–vector multiplications can be used to solve the compact system
(A ⊗ B)x = d with the Kronecker product–vector multiplication algorithm [3]. Suppose C10 000×10 000

can be expressed as the Kronecker product of A100×100 and B100×100. The linear system Cx = d
only requires the storage of two 100 × 100 matrices. In fact, later we will exploit properties of the
Kronecker product to solve the special system (A ⊗ B)x = d very fast.

2.2. Properties of the Kronecker product

Before we can discuss some of the interesting applications of the Kronecker product, a complete
background of its properties is required. These properties are divided into categories by topic. For
example, the ;rst four properties listed are basic Kronecker product properties, while the next three
deal with structure.

2.3. Basic properties

Graham’s book [4] lists the following properties (along with proofs) of the Kronecker product
such as:

1. Associativity:

A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C:

2. Distributivity over ordinary matrix addition:

(A + B) ⊗ (C + D) = A ⊗ C + B ⊗ C + A ⊗ D + B ⊗ D:

3. Compatibility with ordinary matrix multiplication:

AB ⊗ CD = (A ⊗ C)(B ⊗ D):

4. Compatibility with ordinary matrix inversion:

(A ⊗ B)−1 = A−1 ⊗ B−1:
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2.4. Structure and factorization properties

Van Loan’s paper, [23], lists the following additional properties of the Kronecker product:

1. Compatibility with ordinary matrix transposition:

(A ⊗ B)T = AT ⊗ BT:

2. Structure theorems:
(a) If A and B are nonsingular, then A ⊗ B is nonsingular.
(b) If A and B are square lower (upper) triangular, then A ⊗ B is lower (upper) triangular.
(c) If A and B are banded, then A ⊗ B is banded.
(d) If A and B are symmetric, then A ⊗ B is symmetric.
(e) If A and B are positive de;nite, then A ⊗ B is positive de;nite.
(f) If A and B are stochastic, then A ⊗ B is stochastic.
(g) If A and B are Toeplitz, then A ⊗ B is block Toeplitz.
(h) If A and B are orthogonal, then A ⊗ B is orthogonal.

3. Factorizations:
(a) LU : Let A be a square nonsingular matrix of order mA with LU factorization A = PT

ALAUA

and B be a square nonsingular matrix of order mB with LU factorization B=PT
BLBUB. Then

A ⊗ B = (PT
ALAUA) ⊗ (PT

BLBUB) = (PA ⊗ PB)T(LA ⊗ LB)(UA ⊗ UB):

(b) Cholesky: Let A be a positive de;nite matrix of order mA with Cholesky factor GA and
B be a positive de;nite matrix of order mB with Cholesky factor GB. Then the Cholesky
factorization of A ⊗ B is

A ⊗ B = (GT
AGA) ⊗ (GT

BGB) = (GA ⊗ GB)T(GA ⊗ GB):

(c) QR: Let A be an mA × nA matrix with linearly independent columns and QR factorization
A = QARA, where Q is an mA × nA matrix with orthonormal columns and R is an n × n
upper triangular matrix. B is similarly de;ned with B=QBRB as its QR factorization. Then
the QR factorization of A × B is

A ⊗ B = (QARA) ⊗ (QBRB) = (QA ⊗ QB)(RA ⊗ RB):

(d) Schur decomposition: Let A be a square matrix of order mA with Schur decomposition
A = UATAUT

A , where UA is unitary and TA is upper triangular. Let B be a square matrix
of order mB with Schur decomposition B = UBTBUT

B , where UB is unitary and TB is upper
triangular. Then the Schur decomposition of A ⊗ B is

A ⊗ B = (UATAUT
A ) ⊗ (UBTBUT

B ) = (UA ⊗ UB)(TA ⊗ TB)(UA ⊗ UB)T:

(e) Singular value decomposition: Let A be an mA×nA matrix with singular value decomposition
UA�AV T

A and B be an mB × nB matrix with singular value decomposition UB�BV T
B . Let

rank(A) = rA and rank(B) = rB. Then A⊗B has rank rArB and singular value decomposition

A ⊗ B = (UA�AV T
A ) ⊗ (UB�BV T

B ) = (UA ⊗ UB)(�A ⊗ �B)(VA ⊗ VB)T:

Note: All of these factorizations of C = A ⊗ B merely require the factorizations of the
small A and B matrices!
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Most of the theorems have trivial proofs. Many of the proofs in this section can be found in
[4,6,10,19,23].

2.5. Measure and numerical properties

Chapter 4 of the book by Horn and Johnson [6], contains a wealth of information on Kronecker
products and their properties. Some of the more useful ones are listed below.

1. Trace: if A and B are square, then

tr(A ⊗ B) = tr(A) tr(B) = tr(B ⊗ A):

2. Norms: If A is mA × nA and B is mB × nB, then for all p-norms

‖A ⊗ B‖ = ‖A‖ ‖B‖:
3. Rank:

rank(A ⊗ B) = rank(A)rank(B):

4. Eigenvalues and eigenvectors:
For A and B square, let � be a member of the spectrum of A. That is, �∈ �(A). Let xA be a
corresponding eigenvector of � and let �∈ �(B) and xB be a corresponding eigenvector. Then
��∈ �(A ⊗ B) and xA ⊗ xB is the corresponding eigenvector of A ⊗ B. That is, every eigenvalue
of A ⊗ B arises as a product of eigenvalues of A and B.

5. Singular values:
Let the rank(A) = rA and rank(B) = rB. Then the nonzero singular values of A ⊗ B are the
rArB positive numbers {�i(A)�j(B): 16 i6 rA; 16 j6 rB}, where �i(A) is the ith singular
value of A.

6. Determinants: If A is m × m and B is n × n then

det(A ⊗ B) = [det(A)]n [det(B)]m:

7. Powers: If A and B are square then

(A ⊗ B)n = An ⊗ Bn:

Below we prove or provide references to the proofs of each of the seven theorems above.

Proof of 1. Let A be m × m and B be n × n.

tr(A ⊗ B) =
m∑
i=1

tr(ai; iB) =
m∑
i=1

ai; i tr(B) = tr(B)
m∑
i=1

ai; i = tr(B) tr(A):

Proof of 2. We begin by proving the Frobenius norm case, ‖A ⊗ B‖F = ‖A‖F|B‖F.

‖A ⊗ B‖2
F = tr[(A ⊗ B)(A ⊗ B)T] = tr[(A ⊗ B)(AT ⊗ BT)]

= tr(AAT ⊗ BBT) = tr(AAT) tr(BBT) = tr(ATA) tr(BTB)

= ‖A‖2
F‖B‖2

F = (‖A‖F‖B‖F)2:

Therefore, ‖A ⊗ B‖F = ‖A‖F ‖B‖F.
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Now for the 2-norm;

‖A‖2‖B‖2 =
√

�max(A)�max(B)

=
√

�max(A ⊗ B) = ‖A ⊗ B‖2:

The 1-norm case,

‖A ⊗ B‖1 = max
16jA6nA

mA∑
iA=1

|aiAjAB|

= max
16jA6nA;16jB6nB

mA∑
iA=1

mB∑
iB=1

|aiAjAbiBjB |

= max
16jA6nA

mA∑
iA=1

|aiAjA | max
16jB6nB

mB∑
iB=1

|biBjB |

= ‖A‖1‖B‖1:

The ∞-norm is similar to the 1-norm except the largest absolute row sum is used rather than the
largest absolute column sum.

Proof of 3. Let A be m × n and B be p × q. If A = QARA and B = QBRB are the QR factorizations,
where QA is m × n and QB is p × q, then

rank(A ⊗ B) = rank(QARA ⊗ QBRB)

= rank((QA ⊗ QB)(RA ⊗ RB))

= rank(RA ⊗ RB):

Since RA and RB are both upper triangular, then RA ⊗ RB is upper triangular with upper triangular
blocks. Let rank(RA) = rA and rank(RB) = rB. Each row of blocks of size RB has rB nonzero rows.
There are rA nonzero rows of such blocks. Using this and the upper triangular structure of RA⊗RB, we
conclude that rank(RA⊗RB)=rArB. Therefore, rank(A⊗B)=rank(RA⊗RB)=rArB=rank(RA) rank(RB)=
rank(A) rank(B).

Proofs of 4 and 5. Statement of these theorems and their corresponding proofs can be found in
Chapter 4 of the book by Horn and Johnson [6].

Proof of 6. Let A be m×m and B be n×n. A determinant for an n×n matrix G can be determined
from an LU factorization with pivoting [11]. Then det(G) =�G uG1; 1uG2; 2 · · · uGn; n =�G diagprod(UG),
where �G = +1 if an even number of row interchanges are used to obtain PG and −1 if an odd
number of row interchanges are used to obtain PG. With �AB = �A�B;

det(A ⊗ B) = �AB diagprod(UA ⊗ UB)

= �AB(uA1; 1)
n diagprod(UB)(uA2; 2)

n diagprod(UB) · · · (uAm;m)n diagprod(UB)

= �AB(diagprod(UA))n(diagprod(UB))m

= [det(A)]n[det(B)]m:
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Proof of 7. Proof by induction on n. Base case (n = 2):

(A ⊗ B)2 = (A ⊗ B)(A ⊗ B) = A2 ⊗ B2:

Induction step: Assume (A ⊗ B)n = An ⊗ Bn. Show (A ⊗ B)n+1 = An+1 ⊗ Bn+1.

(A ⊗ B)n+1 = (A ⊗ B)n(A ⊗ B) = (An ⊗ Bn)(A ⊗ B) = An+1 ⊗ Bn+1:

2.6. Pseudoinverse properties

We prove three new properties of the Kronecker product in our work with Markov chains and
their preconditioners. To our knowledge, these properties have not been stated or proven elsewhere.
Before we state our new theorems and proofs, we de;ne some generalized inverses: the Drazin
inverse, the group inverse and the Moore–Penrose pseudoinverse [2,11,12].

• If A is an n× n singular matrix of index k such that rank(Ak) = r, then there exists a nonsingular
matrix Q such that

Q−1AQ =

(
Cr×r 0

0 N

)
;

where C is nonsingular and N is nilpotent of index k. The Drazin inverse of A, denoted by AD,
is given as

AD = Q

(
C−1 0

0 0

)
Q−1:

• The group inverse is a special case of the Drazin inverse and applies when the index of the matrix
A is 1. The group inverse is appropriate for singular n × n matrices of rank n − 1 and is denoted
by A#.

• If A is an m × n matrix of rank r, then there exist orthogonal matrices Um×m and Vn×n such that

A = URV T = U

(
Cr×r 0

0 0

)
m×n

V T:

The Moore–Penrose pseudoinverse of A, denoted by A† is the n × m matrix given as

A† = V

(
C−1 0

0 0

)
n×m

UT:

With these de;nitions we are now ready to state our new theorems.

1. Condition number: For all matrix norms,

cond(A ⊗ B) = cond(A) cond(B):

2. Compatibility with the Drazin inverse and the group inverse:

(A1 ⊗ A2 ⊗ · · · ⊗ An)D = AD
1 ⊗ AD

2 ⊗ · · · ⊗ AD
n :

(A1 ⊗ A2 ⊗ · · · ⊗ An)# = A#
1 ⊗ A#

2 ⊗ · · · ⊗ A#
n:
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3. Compatibility with the Moore–Penrose pseudoinverse

(A1 ⊗ A2 ⊗ · · · ⊗ An)† = A†
1 ⊗ A†

2 ⊗ · · · ⊗ A†
n:

Proof of 1. Case 1: If A and B are nonsingular, then

cond(A ⊗ B) = ‖A ⊗ B‖ ‖(A ⊗ B)−1‖
= ‖A ⊗ B‖ ‖A−1 ⊗ B−1‖
= ‖A‖ ‖B‖ ‖A−1‖ ‖B−1‖
= cond(A) cond(B):

Case 2: If A and B are singular, then A ⊗ B is singular and

cond(A ⊗ B) = ‖A ⊗ B‖ ‖(A ⊗ B)†‖
= ‖A ⊗ B‖ ‖A† ⊗ B†‖
= ‖A‖ ‖B‖ ‖A†‖ ‖B†‖
= cond(A) cond(B):

Case 3: If A is nonsingular and B is singular, then A ⊗ B is singular and

cond(A ⊗ B) = ‖A ⊗ B‖ ‖(A ⊗ B)†‖
= ‖A ⊗ B‖ ‖A† ⊗ B†‖
= ‖A‖ ‖B‖ ‖A−1‖ ‖B†‖
= cond(A) cond(B);

since A† = A−1 for A nonsingular.

Proof of 2 (Proof by induction on n): We begin with a proof of the base case, (A1 ⊗A2)D =AD
1 ⊗AD

2 .
We derive a di=erent expression for the right-hand side, then show that the left-hand side can also
be written this way. Every square singular matrix A1 of order nA1 can be decomposed as

A1 = PA1

(
CA1 0

0 NA1

)
P−1

A1
;

where CA1 is nonsingular of size rA1 ×rA1 , NA1 is nilpotent of index kA1 and rank(A
kA1
1 )=rA1 . Similarly,

a square matrix A2 of order nA2 can be written as

A2 = PA2

(
CA2 0

0 NA2

)
P−1

A2
;
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again where CA2 is nonsingular of size rA2 × rA2 , NA2 is nilpotent of index kA2 and rank(A
kA2
2 ) = rA2 .

According to the de;nition of the Drazin inverse,

AD
1 = PA1

(
C−1

A1
0

0 0

)
P−1

A1

and likewise

AD
2 = PA2

(
C−1

A2
0

0 0

)
P−1

A2
:

Thus,

AD
1 ⊗ AD

2 =

[
PA1

(
C−1

A1
0

0 0

)
P−1

A1

]
⊗
[
PA2

(
C−1

A2
0

0 0

)
P−1

A2

]

= (PA1 ⊗ PA2)




C−1
A1

⊗ C−1
A2

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


 (P−1

A1
⊗ P−1

A2
)

= (PA1 ⊗ PA2)

(
C−1

A1
⊗ C−1

A2
0

0 0

)
(P−1

A1
⊗ P−1

A2
):

Now we show that (A1 ⊗ A2)D is equal to the above expression

(A1 ⊗ A2)D =

{[
PA1

(
CA1 0

0 NA1

)
P−1

A1

]
⊗
[
PA2

(
CA2 0

0 NA2

)
P−1

A2

]}D

=

{
(PA1 ⊗ PA2)

[(
CA1 0

0 NA1

)
⊗
(

CA2 0

0 NA2

)]
(P−1

A1
⊗ P−1

A2
)

}D

=




(PA1 ⊗PA2)




CA1 ⊗ CA2 0 0 0

0 CA1 ⊗ NA2 0 0

0 0 NA1 ⊗ CA2 0

0 0 0 NA1 ⊗ NA2


(P−1

A1
⊗P−1

A2
)




D

:
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Let NL be the 3 × 3 principal submatrix of the middle matrix above. NL is nilpotent of index
k = max{kA1 ; kA2}. That is,

Nk
L =




CA1 ⊗ NA2 0 0

0 NA1 ⊗ CA2 0

0 0 NA1 ⊗ NA2




k

= 0:

This follows from (CA1 ⊗ NA2)
k = Ck

A1
⊗ Nk

A2
= Ck

A1
⊗ 0 = 0, and similarly for the other two diagonal

blocks. Using this fact,

(A1 ⊗ A2)D =

{
(PA1 ⊗ PA2)

(
CA1 ⊗ CA2 0

0 NL

)
(P−1

A1
⊗ P−1

A2
)

}D

:

Then with the de;nition of the Drazin inverse and the fact that (CA1 ⊗ CA2)
−1 = C−1

A1
⊗ C−1

A2
, the

base case is complete.

(A1 ⊗ A2)D = (PA1 ⊗ PA2)

(
C−1

A1
⊗ C−1

A2
0

0 0

)
(P−1

A1
⊗ P−1

A2
) = AD

1 ⊗ AD
2 :

The base case has been established: (A1 ⊗ A2)D = AD
1 ⊗ AD

2 . In the induction hypothesis, we assume
that (A1 ⊗A2 ⊗ · · · ⊗An)D =AD

1 ⊗AD
2 ⊗ · · · ⊗AD

n and show that (A1 ⊗A2 ⊗ · · · ⊗An ⊗An+1)D =AD
1 ⊗

AD
2 ⊗· · ·⊗AD

n ⊗AD
n+1. Let Y =A1 ⊗A2 ⊗· · ·⊗An. Then YD =(A1 ⊗A2 ⊗· · ·⊗An)D =AD

1 ⊗AD
2 ⊗· · ·⊗AD

n
by the induction step. And

(A1 ⊗ A2 ⊗ · · · ⊗ An ⊗ An+1)D = (Y ⊗ An+1)D

= YD ⊗ AD
n+1

= AD
1 ⊗ AD

2 ⊗ : : : ⊗ AD
n ⊗ AD

n+1:

The group inverse of A, denoted by A#, is a special case of the Drazin inverse for singular square
matrices with index 1. Thus,

(A1 ⊗ A2 ⊗ · · · ⊗ An)# = A#
1 ⊗ A#

2 ⊗ · · · ⊗ A#
n:

Proof of 3 (Proof by induction on n): We begin with a proof of the base case, (A1 ⊗A2)† =A†
1 ⊗A†

2.
We derive a di=erent expression for the right-hand side, then show that the left-hand side can also
be written this way. Every real mA1 × nA1 matrix A1 has a URV factorization

A1 = UA1

(
CA1 0

0 0

)
V T

A1
;

where the orthogonal matrices UA1 and VA1 are of order mA1 and nA1 , respectively, the nonsingular
matrix CA1 is size rA1 × rA1 and rA1 = rank(A1). Similarly, a real mA2 × nA2 matrix A2 can be written
as

A2 = UA2

(
CA2 0

0 0

)
V T

A2
;



A.N. Langville, W.J. Stewart / Journal of Computational and Applied Mathematics 167 (2004) 429–447 439

where the orthogonal matrices UA2 and VA2 have size mA2 × mA2 and nA2 × nA2 , respectively, the
nonsingular matrix CA2 has size rA2 × rA2 and rA2 = rank(A2). The de;nition of the Moore–Penrose
pseudoinverse of A1, denoted A†

1, gives

A†
1 = VA1

(
C−1

A1
0

0 0

)
UT

A1

and likewise,

A†
2 = VA2

(
C−1

A2
0

0 0

)
UT

A2
:

Thus,

A†
1 ⊗ A†

2 =

[
VA1

(
C−1

A1
0

0 0

)
UT

A1

]
⊗
[
VA2

(
C−1

A2
0

0 0

)
UT

A2

]

= (VA1 ⊗ VA2)




C−1
A1

⊗ C−1
A2

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


 (UT

A1
⊗ UT

A2
)

= (VA1 ⊗ VA2)

(
C−1

A1
⊗ C−1

A2
0

0 0

)
(UT

A1
⊗ UT

A2
):

Now we show that (A1 ⊗ A2)† is equal to the above expression.

(A1 ⊗ A2)† =

{[
UA1

(
CA1 0

0 0

)
V T

A1

]
⊗
[
UA2

(
CA2 0

0 0

)
V T

A2

]}†

=

{
(UA1 ⊗ UA2)

[(
CA1 0

0 0

)
⊗
(

CA2 0

0 0

)]
(V T

A1
⊗ V T

A2
)

}†

=




(UA1 ⊗ UA2)




CA1 ⊗ CA2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


 (VA1 ⊗ VA2)

T




†

=

{
(VA1 ⊗ VA2)

(
(CA1 ⊗ CA2)

−1 0

0 0

)
(UA1 ⊗ UA2)

T

}

=

{
(VA1 ⊗ VA2)

(
C−1

A1
⊗ C−1

A2
0

0 0

)
(UA1 ⊗ UA2)

T

}
:
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The base case has been established. (A1 ⊗ A2)† = A†
1 ⊗ A†

2. By the induction hypothesis, we have
(A1 ⊗ A2 ⊗ · · · ⊗ An)† = A†

1 ⊗ A†
2 ⊗ · · · ⊗ A†

n and show that (A1 ⊗ A2 ⊗ · · · ⊗ An ⊗ An+1)† = A†
1 ⊗ A†

2 ⊗
· · · ⊗ A†

n ⊗ A†
n+1. Let Y = A1 ⊗ A2 ⊗ · · · ⊗ An. Then Y † = (A1 ⊗ A2 ⊗ · · · ⊗ An)† = A†

1 ⊗ A†
2 ⊗ · · · ⊗ A†

n
by the induction step. Finally,

(A1 ⊗ A2 ⊗ · · · ⊗ An ⊗ An+1)† = (Y ⊗ An+1)†

= Y † ⊗ A†
n+1

= A†
1 ⊗ A†

2 ⊗ · · · ⊗ A†
n ⊗ A†

n+1:

3. Applications of properties of Kronecker products

To demonstrate the usefulness of applying these properties of Kronecker products, we return to
the linear system problem, (A⊗B)x =d. Let A be m×m and B be m×m. Property 3(a) of Section
2.2.2 regarding LU factorizations can be exploited. If A ⊗ B is nonsingular then a solution exists
and the system can be written as

(LA ⊗ LB)(UA ⊗ UB)x = d;

where PAA = LAUA and PBB = LBUB. First the lower triangular system (LA ⊗ LB)z = (PA ⊗ PB)d is
solved by forward substitution in O(m3) time. Then (UA ⊗ UB)x = z is solved by back substitution
in O(m3) time. Without exploiting the structure, Gaussian elimination requires O(m6) arithmetic
operations. The Kronecker structure also avoids the formation of m2 ×m2 matrices; only the smaller
LA, LB, UA, UB are needed.

For example, consider the forward substitution (LA ⊗ LB)z = d, where A and B are 3 × 3 matrices
and z and d are 9×1 vectors. To simplify the notation, we assume PA and PB are identity matrices.




a11 0 0

a21 a22 0

a31 a32 a33


⊗




b11 0 0

b21 b22 0

b31 b32 b33







z1

z2

...

z9


=




d1

d2

...

d9


 :

Then,

LA ⊗ LB =




a11b11 0 0 0 0 0 0 0 0
a11b21 a11b22 0 0 0 0 0 0 0
a11b31 a11b32 a11b33 0 0 0 0 0 0

a21b11 0 0 a22b11 0 0 0 0 0
a21b21 a21b22 0 a22b21 a22b22 0 0 0 0
a21b31 a21b32 a11b33 a22b31 a22b32 a22b33 0 0 0

a31b11 0 0 a32b11 0 0 a33b11 0 0
a31b21 a31b22 0 a32b21 a32b22 0 a33b21 a33b22 0
a31b31 a31b32 a31b33 a32b31 a32b32 a32b33 a33b31 a33b32 a33b33




;
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which is a unit lower triangular matrix with lower triangular blocks. The ;rst m=3 equations of this
9 × 9 system represent a lower triangular matrix and can be solved in O(m2) arithmetic operations:

a11b11z1 = d1;

a11b21z1 + a11b22z2 = d2;

a11b31z1 + a11b32z2 + a11b33z3 = d3:

Now the next three equations are:

a21b11z1 + a22b11z4 = d4;

a21b21z1 + a21b22z2 + a22b21z4 + a22b22z5 = d5;

a21b31z1 + a21b32z2 + a21b33z3 + a22b31z4 + a22b32z5 + a22b33z6 = d6:

The boldface expression in the ;rst equation, a21b11z1, can be computed as a21d1=a11. The second
bold-face expression, a21b21z1 + a21b22z2, is just a21d2=a11, while the third expression, a21b31z1 +
a21b32z2 + a21b33z3, is a21d3=a11. We use the previous expressions for obtaining z1, z2 and z3 in the
;rst set of equations to simplify the second set of three equations. The simpli;ed second set of
equations becomes

a22b11z4 = d4 − a21d1

a11
;

a22b21z4 + a22b22z5 = d5 − a21d2

a11
;

a22b31z4 + a22b32z5 + a22b33z6 = d6 − a21d3

a11
:

Solving the second set of equations takes O(m) arithmetic operations and the forward solve step
takes O(m2) operations, so obtaining z4, z5 and z6 takes O(m2) time. This simpli;cation and using
the work from the previous solution step continues so that solving each of the m sets of m equations
takes O(m2) time, resulting in an overall solution time of O(m3). Exploiting the Kronecker structure
reduces the usual, expected O(m4) time to solve (LA ⊗ LB)z = d to O(m3) time.

One ;nal note regarding the exploitation of the Kronecker structure of the linear system remains.
Suppose the matrices A and B are of di=erent sizes. Then, the time required to solve the linear
system (A ⊗ B)x = d is O(mAm2

B), where mA is the size of A and mB is the size of B.
Van Loan’s paper [23] provides a thorough catalog of further applications of the Kronecker

product. We brieRy mention a few here. One application receiving growing interest is semide;nite
programming. Due to the surge of work on interior point methods, the solution to systems involv-
ing the symmetric Kronecker product has been studied recently. The Kronecker product appears
in numerous types of least squares problems; one example is the problem of surface ;tting with
splines. Kronecker products have also been used to unify the ;eld of fast transforms such as the fast
Fourier transform, the Hartley transform, and fast wavelet transforms. The Kronecker product plays
an instrumental role in many image restoration algorithms. The Kronecker product has also been
used to form approximate inverse preconditioners, an application we emphasize in Section 4. One
application of the Kronecker product not found in Van Loan’s paper is SANs. The remainder of this
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paper deals with SANs and their connection to the Kronecker product. First, we de;ne SANs, then
we discuss their preconditioning problems.

4. SANs

Markov chains can be used to model many physical systems. For example, Markov chains are used
frequently to answer performance questions about parallel and distributed computer systems. While
Markov chains provide accurate measures of the system, the size of the Markov chain can quickly
grow to an enormous and even intractable size. Storing the state space and in;nitesimal generator
matrix Q for such large Markov chains (on the order of millions) has become a bottleneck. One
remedy for this storage problem is SANs, which store the in;nitesimal generator of the Markov
chain in compact form using Kronecker products. SANs [14] are particularly applicable to parallel
and distributed computer systems. The reason for this will become clear after we de;ne SANs.

A SAN consists of several individual stochastic automata which act independently for the most
part. Occasionally, these automata may need to coordinate their actions, thus connecting the individual
automata in a network of automata which depend on one another. Each individual automaton A(i) has
a number of states associated with it. A(i) also has a number of rules which determine its movement
from one state to the next. The state of any automaton at time t is the state it occupies at time t.
The state of the collective SAN at time t is the state of each of its corresponding automata. Fig. 1
gives the high-level representation of a SAN.

Automaton A(1) contains 4 states, A(2) contains 4 states and A(3) contains 3 states. The current state
of each automaton is denoted by the shaded circle. Thus the current state of the SAN is denoted by
all three shaded circles. The line connecting A(1) and A(2) represents the interaction between these

Fig. 1. Stochastic automata network.



A.N. Langville, W.J. Stewart / Journal of Computational and Applied Mathematics 167 (2004) 429–447 443

two automata. Somehow A(1) and A(2) need to coordinate their actions. Exactly how they might
need to do this will be described later. If the lines connecting the automata were not present in the
diagram then A(1), A(2) and A(3) would be completely independent systems. A(1)’s stochastic behavior
could be modeled with a separate Markov chain from A(2) and so on. Thus, SANs are only useful
for automata which have some interaction. However, too much interaction among the automata can
complicate the SAN to the point that its use is questionable. Clearly, SANs should be restricted to
systems with appropriate infrequent interaction.

There are two general ways in which these automata may interact with one another. One concerns
the transitions themselves and the other concerns the actual transition rates. First, the global state may
change when a transition occurs. Transitions can be either local or synchronizing. Local transitions
only a=ect the corresponding automaton. When an automaton has a local transition, it moves from
one of its states to another of its states. Synchronizing transitions are not local. They a=ect the
global state by changing the state of several automata. A synchronizing transition occurs when one
automaton enables a transition to occur in two or more other automata.

The second type of interaction draws another distinction between transitions. They can be either
constant or functional. A functional transition occurs when an automaton’s transition rate is a function
of the state of another automaton. Transitions that are not functional are called constant. Constant
or functional transitions, unlike synchronizing transitions, a=ect only the local automata involved.
Note that synchronizing transitions may be constant or functional. This information regarding the
automata and their types of transitions provides all the information needed to formally de;ne a SAN,
as Atif and Plateau have done [16]. While this infrequent interaction (synchronizing transitions and
functional transition rates) does complicate SANs, Plateau and her coworkers have shown that the
SAN can still be represented in compact form as a sum of Kronecker products, known as the SAN
descriptor [14,17,20].

Plateau and Fourneau [17] have shown that SANs with N automata and E synchronizing events
should be handled by separating out the local transitions for each automata and writing this local
e=ect as the ordinary sum of N Kronecker products with each Kronecker product involving N smaller
matrices. Then the e=ect of the synchronizing events is added. Each synchronizing event requires
two more Kronecker products of N matrices. Thus the in;nitesimal generator of a SAN can always
be written as

Q =
2E+N∑
j=1

N⊗
i=1

Q(i)
j :

When the in;nitesimal generator matrix Q is written and stored in the form
∑2E+N

j=1 ⊗N
i=1Q

(i)
j ,

this is called the SAN descriptor. The reader should note that the SAN descriptor is the sum of
Kronecker products.

So far, we have only discussed the e=ect of synchronizing events on the structure of this SAN
descriptor. In summary, we learned that there are two more terms in the descriptor for each synchro-
nizing event. An increasing number of synchronizing events increases the complexity of the SAN
model, which is why SANs are restricted to systems with appropriate infrequent interaction. We now
mention the e=ect of functional transitions on the SAN descriptor. By extending the ordinary Kro-
necker product to the generalized Kronecker product [16,17], the SAN descriptor can still be written
as above, but the elements of the Q(i)

j matrices may now be functions. These functional entries
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require that the appropriate numerical values be computed and substituted each time the functional
rate is needed. Thus, functional transitions do not change the structure of the SAN descriptor, but
they do add complexity and a computational burden.

In practice, the modeler works from the SAN system and forms and stores each of the Q(i)
j matrices

following the rules given in [17,20,21]. We emphasize that the global in;nitesimal generator matrix
Q is never formed or stored. Herein lies the storage-saving capacity of the SAN formalism. Consider
a collection of four automata each of size 100. Suppose the infrequent interaction among these four
automata is described by two synchronizing events and there are no functional transitions. The global
Q is size 108 but only 2E +N = 2 × 2 + 4 = 8 sparse matrices of size 100 need to be stored, thanks
to the Kronecker product!

4.1. Stationary analysis of a SAN

The computation of the stationary solution ' of a continuous-time ergodic Markov chain involves
solving the linear system 'Q = 0 and 'eT = 1, where Q is the in;nitesimal generator of the Markov
chain and e represents the unit row vector. Q is singular with rank n−1. Thus, ;nding the stationary
solution of a continuous-time Markov chain can be viewed as a linear system problem. Another
way to view the same problem is as an eigenvalue problem. P is the transition probability matrix
associated with the same system. In fact, P = I + StQ where St6 1=max|qii|. P is a stochastic
matrix with a unit eigenvalue. Then ;nding the stationary solution ' involves solving '='P, which
is an eigenvalue problem. Now this eigenvalue problem can be used to de;ne the power method,
an iterative method for ;nding ' by computing iterates with

x(k+1) = x(k)P:

With a suitable initial iterate x(0), x(k+1) will converge to the eigenvector ' which can then be
normalized so that ' contains the stationary solution.

Very large Markov chains are often represented as SANs using the SAN descriptor in place of
Q. Namely, Q =

∑T
j=1 ⊗N

i=1Q
(i)
j , where T = 2E + N , E is the number of synchronizing events and

N is the number of automata. Since P = I + StQ, then in the SAN formalism,

P = I + StQ =
N⊗
i=1

Ini +
T∑

j=1

St
N⊗
i=1

Q(i)
j

and the power method for SANs can be written as

x(k+1) = x(k)(I + StQ) = x(k) + Stx(k)


 T∑

j=1

N⊗
i=1

Q(i)
j


 :

The power method is the simplest of all iterative methods for ;nding the stationary solution
vector '. The Jacobi, Gauss–Seidel and SOR method are three more iterative methods used for
solving linear systems, such as our homogeneous linear system 'Q= 0. Yet these methods are based
on splittings of the transition matrix and thus are not easily transferable to the SAN formalism.
Another class of iterative methods is that of projection methods. These methods approximate an
exact solution (in our case, the stationary solution) by building better and better approximations
which are taken from small-dimension subspaces. Some popular projection methods are Arnoldi,
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GMRES, CGS, BiCGSTAB and QMR. Such projections methods can be and have been applied to
SANs [1,15,22]. In fact, any iterative or projection method which involves a matrix–vector multiply
can be used to ;nd the stationary distribution of a SAN. In place of the matrix–vector multiply,
the Kronecker product–vector multiplication algorithm invented by Fernandes and his coworkers [3]
can be used. Direct methods for solving linear systems, such as those based on LU decompositions,
are not immediately amenable to SANs because the SAN’s compact descriptor representation of
the generator matrix precludes easy access to the L, U factors. Furthermore, SANs are used as a
compact, alternative representation for very large Markov models. The size of such models makes
direct methods impractical [20].

4.2. Preconditioning for SAN

It is well known that the iterative methods discussed above perform better when preconditioners
are used. The convergence of an iterative method depends on the eigenvalues of the system. Any
iterative method can converge slowly if the eigenvalue distribution is undesirable for that method.
For example, when the subdominant eigenvalue of the iteration matrix is close to the dominant
eigenvalue (which is 1 for our transition matrices P), the power method converges slowly. Thus
the goal of preconditioning is to modify the eigenvalue distribution of the iteration matrix so that
convergence is improved while the solution remains unchanged.

In general, for the linear system Ax = b, we introduce the preconditioning matrix M , so that
MAx = Mb. We hope that M is a good approximation of A−1 and thus convergence will be rapid.

For Markov chain problems, the preconditioned power method becomes

x(k+1) = x(k)(I − (I − P)M):

Since the matrix (I − P) is singular with rank(n− 1), we choose M to be a good approximation of
the group inverse of (I −P), written as (I −P)#. Thus for SANs, the preconditioned power method
is

x(k+1) = x(k)(I − (I − (I + StQ))M)

= x(k)(I + StQM)

= x(k) + Stx(k)QM

= x(k) + Stx(k)


 T∑

j=1

N⊗
i=1

Q(i)
j


M:

The problem now becomes that of ;nding a suitable preconditioner M that ;ts nicely into the
SAN formalism. A popular set of preconditioners, ILU preconditioners, have largely been dismissed
from consideration. The problem with adapting ILU preconditioners to SANs (for use in an iterative
method, like the preconditioned power method) is that they are based on incomplete LU factorizations
of the transition matrix. SANs store the transition matrix information as a sum of Kronecker products.
And thus, an LU factorization of a SAN descriptor is not easily accessible.

Numerous other preconditioners have been proposed for SANs but each has been unsuccessful
[1,18,22]. Recently, we discovered a nearest Kronecker product (NKP) preconditioner for SANs
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[8]. The initial results for the NKP preconditioner look promising [7,9]. Our NKP preconditioner
is derived from Pitsianis and Van Loan’s work on approximation with Kronecker products. They
discovered a method for ;nding the NKP, A ⊗ B, for a general matrix R [13]. Since A ⊗ B ≈ R,
one would hope that A−1 ⊗ B−1 ≈ R−1. They took A−1 ⊗ B−1 = M as the preconditioner and
tested this on a small example. Their Kronecker preconditioner compared favorably with many other
preconditioners. This sparked us to try to extend this to ;nd a suitable SAN preconditioner. For
our case of Markov chains, we want to approximate Q# rather than Q−1. However, the algorithm
for ;nding the A and B almost always results in a nonsingular A and nonsingular B. Thus, we
must use the standard inverses, A−1 and B−1, to form the preconditioner. In e=ect, we are using the
ideal preconditioner M = A−1 ⊗ B−1 for a nearby system whose coe8cient matrix Q̂ is almost Q.
Finding the small A−1 and B−1 matrices is not too di8cult and the approximation is good for many
matrices with nice structure. The advantage of the Kronecker approximation for SANs is that M
need never be formed, instead only A−1 and B−1 need to be stored and used in the vector-Kronecker
product multiplication of the iterative methods. In fact, we were able to extend Pitsianis and Van
Loan’s work to ;nd any number of smaller matrices whose Kronecker product approximates the
original matrix Q [8]. Thus, we can ;nd A; B; : : : ; N such that A ⊗ B ⊗ · · · ⊗ N ≈ Q. We take
M = A−1 ⊗ B−1 ⊗ · · · ⊗ N−1 as our NKP preconditioner for SANs. Our initial battery of tests of
the NKP preconditioner on SANs reports good results [9]. In fact, the NKP SAN preconditioner
outperforms all other current preconditioners. We would like to remind the reader that the properties
and power of the Kronecker product made this discovery of a SAN preconditioner possible.

5. Conclusion

The use and power of the Kronecker product is indeed ubiquitous as Van Loan [23] has suggested.
In this paper, we have gathered and cataloged the most useful properties of the Kronecker product
and we also added several new properties to this list. We then used these properties to describe a
new application for the Kronecker product, SANs.
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