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Abstract. An iterative algorithm based on aggregation/disaggregation principles is presented
for updating the stationary distribution of a finite homogeneous irreducible Markov chain. The focus
is on large-scale problems of the kind that are characterized by Google’s PageRank application, but
the algorithm is shown to work well in general contexts. The algorithm is flexible in that it allows for
changes to the transition probabilities as well as for the creation or deletion of states. In addition to
establishing the rate of convergence, it is proven that the algorithm is globally convergent. Results
of numerical experiments are presented.
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1. Introduction. Suppose that the stationary distribution vector

φT = (φ1, φ2, . . . , φm)

for an m-state homogeneous irreducible Markov chain with transition probability
matrix Qm×m is known (by prior computation, such as solving φTQ = φT , or by other
means), but the chain requires updating by altering some of its transition probabilities
or by adding or deleting some states. Suppose that the updated transition probability
matrix Pn×n is also irreducible. The updating problem is to compute the updated
stationary distribution πT = (π1, π2, . . . , πn) for P by somehow using the components
in φT to produce πT with less effort than is required by working blind (i.e., by
computing πT without knowledge of φT ).

When the updating involves only perturbing entries in Q (i.e., no states are added
or deleted), the problem is referred to as an element-updating problem. If states need
to be added or deleted, the problem is called a state-updating problem. The state-
updating problem is clearly more difficult, and it generally includes the element-
updating problem as a special case. Our purpose is to present a general-purpose
algorithm that simultaneously handles both kinds of updating problems. But before
presenting our algorithm, we review the shortcomings of some existing approaches to
updating.

2. Restarting the power method. Even for simple element updating, the
restarted power method is not an overly effective technique. Suppose that the updat-
ing process calls for perturbing transition probabilities in Q to produce the updated
matrix P (but no states are added or deleted), and suppose that it is known that
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the updated stationary distribution πT for P is in some sense close to the original
stationary distribution φT for Q. For example, this might occur if the perturbations
to Q are small. It is intuitive that if φT and πT are close, then applying

xT
j+1 = xT

j P with xT
0 = φT(1)

should produce an accurate approximation to πT in fewer iterations than are required
when an arbitrary initial vector is used. To some extent this is true, but intuition
generally overestimates the impact.

It is well known that if λ2 is the subdominant eigenvalue of P, and if λ2 has index
one (linear elementary divisors), then the asymptotic rate of convergence [29, p. 621]
of (1) is

R = − log10 |λ2|.(2)

For linear stationary iterative procedures the asymptotic rate of convergence R is an
indication of the number of digits of accuracy that can be expected to be eventually
gained on each iteration, and this is independent of the initial vector. For example,
suppose that the entries of P−Q are small enough to ensure that each component πi

agrees with φi in the first significant digit, and suppose that the goal is to compute
the update πT to twelve significant places by using (1). Since xT

0 = φT already has
one correct significant digit, and since about 1/R iterations are required to gain each
additional significant digit of accuracy, (1) requires about 11/R iterations, whereas
starting from scratch with an initial vector containing no significant digits of accuracy
requires about 12/R iterations. In other words, the effort is reduced by about 8% for
each correct significant digit that can be built into xT

0 . This dictates how much effort
should be invested in determining a “good” initial vector. Of course, if one is willing
to settle for fewer digits of accuracy or the number of agreeing digits is higher, then
the savings could be more substantial.

To appreciate what this means concerning the effectiveness of using (1) as an
updating technique, suppose, for example, that |λ2| = .85, and suppose that the
perturbations involved in updating Q to P are such that each component πi agrees
with φi in the first significant digit. If (1) is used to produce twelve significant digits
of accuracy, then it follows from (2) that about 156 iterations are required. This
is only about 16 fewer than are needed when starting blind with a random initial
vector. Consequently, the power method is not an attractive approach to the element-
updating problem even when changes are relatively small. While grossly ineffective,
state updating can be accomplished by restarting the power method with an updated
Q and an initial vector obtained by renormalizing results from prior computations
after appropriate components are added or deleted. In other words, the restarted
power method is not a viable technique for either element updating or state updating.

2.1. Faster converging states. There are times (e.g., see section 8) when there
is a need to isolate the faster evolving states of a chain from the slower ones. This
is especially true for chains such as Google’s PageRank application (discussed later)
in which there are a relatively small number of slower evolving components that drag
the entire limiting process down. The asymptotic rate of convergence (2) of the
power method is of little help here because it is by design a conservative measure that
accounts for the overall evolution rate of the process, and hence must account for the
slowest converging states.

To get a sense of what determines which components converge faster than others,
let {1, λ2, . . . , λk} be the distinct eigenvalues of P, and suppose that P has a standard
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spectral decomposition [15], [29, p. 517]

P =

k∑
i=1

λiGi = eπT +

k∑
i=2

λiGi =⇒ Pn =

k∑
i=1

λn
i Gi = eπT +

k∑
i=2

λn
i Gi,

where e = (1, 1, . . . , 1)T , Gi is the ith spectral projector, and 1 > |λ2| ≥ |λ3| ≥ · · · ≥
|λk|. If λ2 is a simple eigenvalue, then G2 = u2v

T
2 /v

T
2 u2, where vT

2 and u2 are left
and right eigenvectors associated with λ2, respectively, and

xT
n = xT

0 PnxT
0 Gi = πT + ξλn

2v
T
2 +

k∑
i=3

λn
i x

T
0 Gi,(3)

where ξ = xT
0 u2/v

T
2 u2. If we exclude the cases in which |λ2| = |λ3|, ξ = 0 (i.e., x0 ⊥

u2), and that components in ξλn
2v

T
2 are canceled out by corresponding components in

the remainder of the sum (all of which are unlikely in practice), then it is clear from
(3) that a given component in xT

n will converge at a rate faster than that dictated
by (2) if and only if the corresponding component in the left-hand eigenvector vT

2 is
zero. In other words, the positions of the zero (or near-zero) entries in vT

2 dictate the
faster evolving components. There is a special class of matrices for which vT

2 is known
to have many components of very small magnitude. We postpone discussion of these
until section 8.2.

3. Exact updating. The purpose of this section is to show that element updat-
ing can, in fact, always be accomplished by means of a simple and direct formula that
is guaranteed to return exact results (in exact arithmetic), even when perturbations
are allowed to be large. However, you may not want to pay the computational cost
to obtain exact results when significant updating is needed.

Consider perturbing some transition probabilities in Q (irreducible and stochas-
tic) to produce an updated matrix P (also irreducible and stochastic) without adding
or deleting states, but no longer constrain the perturbations to be small. Instead of
considering perturbations that are small in magnitude, consider perturbations that
affect only a small number of states.

The problem is cast in terms of updating Q one row at a time. The idea is
similar to application of the Sherman–Morrison formula [29, p. 124] for updating
a solution to a nonsingular linear system, but the techniques must be adapted to
the singular matrix A = I − Q. The mechanism for doing this is by means of the
group inverse A# for A, which is the unique matrix satisfying the three equations
AA#A = A, A#AA# = A#, and AA# = A#A. This matrix is often involved in
questions concerning Markov chains; see [6, 23, 29] for some general background and
[6, 9, 11, 14, 23, 25, 27, 28, 31, 32, 38] for Markov chain applications. The precise
formula to perform exact updating is as follows.

Theorem 3.1. Let Q be the transition probability matrix of an irreducible Markov
chain and suppose that the ith row qT of Q is updated to produce pT = qT − δT , the
ith row of P, which is also the transition matrix of an irreducible chain. If φT and
πT denote the stationary probability distributions of Q and P, respectively, and if
A = I − Q, then πT = φT − εT , where

εT =

[
φi

1 + δTA#
∗i

]
δTA# (A#

∗i = the ith column of A#).(4)
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To handle multiple row updates to Q, this formula must be sequentially applied one
row at a time, which means that the group inverse must be sequentially updated. The
formula for updating (I − Q)# to (I − P)# is as follows:

(I − P)# = A# + eεT
[
A# − γI

]
− A#

∗iε
T

φi
, where γ =

εTA#
∗i

φi
.(5)

Since exact updating is not the primary focus of this article, the formal proof of
Theorem 3.1 is omitted, but the interested reader can find the details that constitute
a proof in [31].

While Theorem 3.1 provides theoretical answers to the element updating problem,
it is not computationally satisfying, especially if more than just one or two rows are
involved. If every row needs to be touched, then using formulas (4) and (5) requires
O(n3) floating point operations, which is comparable to the cost of starting from
scratch.

Other updating formulas exist [9, 12, 16, 20, 36], but all are variations of the same
rank-one updating idea involving a Sherman–Morrison [13, 15], [29, p. 124] type of
formula, and all are O(n3) algorithms for a general update. Moreover, all of these
rank-one updating techniques apply only to the simpler element-updating problem
and are not easily adapted to handle more complicated state-updating problems. The
bottom line is that while exact element-updating formulas might be useful when only
a row or two need to be changed and no states are added or deleted, they are not
practical for making more general updates.

4. Approximate updating using approximate aggregation. If, instead of
aiming for the exact value of the updated stationary distribution, one is willing to
settle for an approximation, then the door opens wider. For example, an approxima-
tion approach based on state-lumping has been suggested in [7] to estimate Google’s
PageRank vector. State-lumping is part of a well-known class of methods known as
approximate aggregation techniques [37] that have been used in the past to estimate
stationary distributions of nearly uncoupled chains. Even though it produces only
estimates of πT , approximate aggregation can handle both element updating as well
as state updating and is computationally cheap.

The idea behind the application of approximate aggregation to perform updating
is to use the previously known distribution

φT = (φ1, φ2, . . . , φm)

together with the updated transition probabilities in P to build an aggregated Markov
chain having a transition probability matrix A that is smaller in size than P. The
stationary distribution αT of A is used to generate an estimate of the true updated
distribution πT as outlined below.

The state space S of the updated Markov chain is first partitioned as S = G∪G,
where G is the subset of states whose stationary probabilities are likely to be most
affected by the updates (newly added states are automatically included in G, and
deleted states are accounted for by changing affected transition probabilities to zero).
The complement G naturally contains all other states. The intuition is that the effect
of perturbations involving only a few states in large sparse chains (such as those in
Google’s PageRank application) is primarily local, and most stationary probabilities
are not significantly affected. Deriving good methods for determining G is a pivotal
issue, and this is discussed in detail in section 8.
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Partitioning the states of the updated chain as S = G ∪ G induces a partition
(and reordering) of the updated transition matrix

Pn×n =

⎛⎝
G G

G P11 P12

G P21 P22

⎞⎠,(6)

where P11 is g×g with g = |G| being the cardinality of G and P22 is (n−g)× (n−g).
Similarly, the associated stationary distribution

πT = (π1, . . . , πg |πg+1, . . . , πn) =
(
π1, . . . , πg |πT

)
is reordered and partitioned in an associated manner.

The stationary probabilities from the original distribution φT that correspond to

the states in G are placed in a row vector φ
T
, and the states in G are lumped into

one superstate to create a smaller aggregated Markov chain whose transition matrix
is the (g + 1) × (g + 1) matrix given by

Ã =

(
P11 P12e

s̃TP21 1 − s̃TP21e

)
, where s̃T =

φ
T

φ
T
e

(e is a column of ones).(7)

The approximation procedure in [7] computes the stationary distribution

α̃T = (α̃1, α̃2, . . . , α̃g, α̃g+1)

for Ã and uses the first g components in α̃T along with those in φ
T
to create an

approximation π̃T to the true updated distribution πT by setting

π̃T =
(
α̃1, α̃2, . . . , α̃g |φ

T
)
.(8)

In other words, use

πi ≈ π̃i =

{
α̃i if state i belongs to G,

φi if state i belongs to G.
(9)

The reason that (9) can produce good estimates is because it can be demonstrated
(see section 6) that when there is absolutely no change in the stationary probabilities

that correspond to states in G (i.e., when φ
T

= πT ), then

α̃i =

{
πi for 1 ≤ i ≤ g,

πTe for i = g + 1.

Therefore, when there is only a small change in the stationary probabilities that

correspond to states in G (i.e., when φ
T ≈ πT ), it is reasonable to expect that

α̃i ≈ πi for 1 ≤ i ≤ g. This along with φ
T
e ≈ πTe also ensures that π̃Te ≈ 1,

and thus the approximation (8) can be close enough to a probability vector to avoid
the need for renormalization. The accuracy of this approximation scheme along with
other theoretical details is discussed in sections 5 and 6.
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5. Exact aggregation. The technique described in section 4 is simply one par-
ticular way to approximate the results of exact aggregation that is developed in [26]
and is briefly outlined below. For an irreducible n-state Markov chain whose state
space has been partitioned into k disjoint groups S = G1∪G2∪· · ·∪Gk, the associated
transition probability matrix assumes the block-partitioned form

Pn×n =

⎛⎜⎜⎜⎜⎜⎝

G1 G2 · · · Gk

G1 P11 P12 · · · P1k

G2 P21 P22 · · · P2k

...
...

...
. . .

...

Gk Pk1 Pk2 · · · Pkk

⎞⎟⎟⎟⎟⎟⎠ (with square diagonal blocks).(10)

This parent Markov chain defined by P induces k smaller Markov chains, called
censored chains, as follows. The censored Markov chain associated with a group
of states Gi is defined to be the Markov process that records the location of the
parent chain only when the parent chain visits states in Gi. Visits to states outside
of Gi are ignored. The transition probability matrix for the ith censored chain is the
ith stochastic complement [26]

Si = Pii + Pi�(I − P�
i )

−1P�i,(11)

in which Pi� and P�i are, respectively, the ith row and the ith column of blocks with
Pii removed, and P�

i is the principal submatrix of P obtained by deleting the ith row
and ith column of blocks. For example, if the partition consists of just two groups
S = G1 ∪G2, then there are only two censored chains, and their respective transition
matrices are the two stochastic complements

S1 = P11 + P12(I − P22)
−1P21 and S2 = P22 + P21(I − P11)

−1P12.

If the stationary distribution for P is πT = (πT
1 |πT

2 | · · · |πT
k ) (partitioned con-

formably with P), then the ith censored distribution (the stationary distribution for
Si) is known [26] to be equal to

sTi =
πT
i

πT
i e

(e is an appropriately sized column of ones).(12)

For primitive chains [29, p. 693] (also known as aperiodic or regular chains [20, 36, 35]),
the jth component of sTi is the limiting conditional probability of being in the jth
state of group Gi given that the process is somewhere in Gi.

To compress each group Gi into a single state in order to create a small k-state
aggregated chain, squeeze the parent transition matrix P down to the aggregated
transition matrix (sometimes called the coupling matrix ) by setting

Ak×k =

⎛⎜⎝sT1 P11e · · · sT1 P1ke
...

. . .
...

sTk Pk1e · · · sTk Pkke

⎞⎟⎠ .(13)

If P is stochastic and irreducible, then so is A [26]. For primitive chains, transitions
between states in the aggregated chain defined by A correspond to transitions between
groups Gi in the unaggregated parent chain when the parent chain is in equilibrium.
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The remarkable feature surrounding this aggregation idea is that it allows a parent
chain to be decomposed into k small censored chains that can be independently solved,
and the resulting censored distributions sTi can be combined with the stationary
distribution of A to construct the parent stationary distribution πT . This is the exact
aggregation theorem.

Theorem 5.1 (exact aggregation [26]). If P is the block-partitioned transition
probability matrix (10) for an irreducible n-state Markov chain whose stationary prob-
ability distribution is

πT = πT
1 |πT

2 | · · · |πT
k (partitioned conformably with P),

and if αT = (α1, α2, . . . , αk) is the stationary distribution for the aggregated chain
defined by the matrix Ak×k in (13), then αi = πT

i e, and the stationary distribution
for P is

πT =
(
α1s

T
1 |α2s

T
2 | · · · |αks

T
k

)
,

where sTi is the censored distribution associated with the stochastic complement Si in
(11).

6. Exact versus approximate aggregation. While exact aggregation as pre-
sented in Theorem 5.1 is elegant, it is an inefficient numerical procedure for computing
πT because costly inversions are embedded in the stochastic complements (11) that
are required to produce the censored distributions sTi . Consequently, it is common to
attempt to somehow approximate the censored distributions, and there are at least
two methods for doing so.

1. Sometimes the stochastic complements Si are first estimated, and then the
distributions of these estimates are computed to provide approximate cen-
sored distributions, which in turn leads to an approximate aggregated tran-
sition matrix that is used to produce an approximation to πT by employing
Theorem 5.1.

2. The other approach is to bypass the stochastic complements altogether and
somehow estimate the censored distributions sTi directly. This is the essence
of the approximation scheme described in section 4.

To understand the application of the second approach given above, consider the
updated transition matrix P given in (6) to be partitioned into g + 1 levels in which
the first g diagonal blocks are just 1 × 1, and the lower right-hand block is the (n −
g) × (n − g) matrix P22 associated with the states in G. In other words, to fit the
context of the Theorem 5.1, the partition in (6) is viewed as

P =

⎛⎝
G G

G P11 P12

G P21 P22

⎞⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

p11 · · · p1g P1�

...
. . .

...
...

pg1 · · · pgg Pg�

P�1 · · · P�g P22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,(14)

where

P11 =

⎛⎜⎝p11 · · · p1g

...
. . .

...
pg1 · · · pgg

⎞⎟⎠ , P12 =

⎛⎜⎝P1�

...
Pg�

⎞⎟⎠ , and P21 = (P�1 · · ·P�g) .
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Since the first g diagonal blocks in the partition (14) have size 1 × 1 (they are the
scalars pii), it is evident that their corresponding stochastic complements are Si = 1
(because they are 1 × 1 stochastic matrices), and thus the censored distributions are
si

T = 1 for 1 ≤ i ≤ g. This means that the exact aggregated transition matrix (13)
associated with the partition (14) is

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

p11 · · · p1g P1�e

...
. . .

...
...

pg1 · · · pgg Pg�e

sTP�1 · · · sTP�g sTP22e

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(g+1)×(g+1)

(15)

=

⎛⎝ P11 P12e

sTP21 sTP22e

⎞⎠ =

⎛⎝ P11 P12e

sTP21 1 − sTP21e

⎞⎠ ,

where sT is the censored distribution derived from the only significant stochastic
complement

S = P22 + P21

(
I − P11

)−1
P12.

If the stationary distribution for A is

αT =
(
α1, . . . , αg, αg+1

)
,

then exact aggregation (Theorem 5.1) ensures that the exact stationary distribution
for P is

πT = (π1, . . . , πg |πg+1, . . . , πn) =
(
π1, . . . , πg |πT

)
=

(
α1, . . . , αg |αg+1s

T
)
.(16)

It is a fundamental issue to describe just how well the estimate π̃T given in (8)
approximates the exact distribution πT given in (16). Obviously, the degree to which

π̃i ≈ πi for i > g (i.e., the degree to which φ
T ≈ πT ) depends on the degree to which

the partition S = G∪G can be adequately constructed. While it is somewhat intuitive
that this should also affect the degree to which π̃i approximates πi for i ≤ g, it is not
clear, at least on the surface, just how good this latter approximation is expected to
be. The analysis is as follows.

Instead of using the exact censored distribution sT to build the exact aggregated

matrix A in (15), the vector s̃T = φ
T
/φ

T
e is used to approximate sT in order to

construct the approximate aggregate Ã given in (7). The magnitude of

δT = sT − s̃T =
πT

πTe
− φ

T

φ
T
e

and the magnitude of

E = A − Ã =

(
0 0

δTP21 −δTP21e

)
=

(
0

δT

)
P21

(
I | − e

)
(17)
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are clearly of the same order. This suggests that if the partition S = G ∪ G can be
adequately constructed so as to ensure that the magnitude of δT is small, then Ã is
close to A, so their respective stationary distributions α̃T and αT should be close,
thus ensuring that π̃i and πi are close for i ≤ g.

However, Markov chains can exhibit sensitivities to small perturbations when a
subdominant eigenvalue of the transition probability matrix is close to 1 [28, 30] or
when there are large mean first passage times in the chain [8], and several measures
of “condition” have been developed to gauge these situations [9, 11, 14, 18, 24].

The point being made here is that unless the degree to which A is well conditioned
is established, the degree of the approximation in (8) is in doubt regardless of how close

φ
T

is to πT . This may seem to be a criticism of the idea behind the approximation
(8), but, to the contrary, the purpose of this article is to argue that this is a good
idea because it can be viewed as the first step in an iterative aggregation scheme
that performs remarkably well. The following sections are dedicated to developing an
iterative aggregation approach to updating stationary probabilities.

7. Updating with iterative aggregation. Iterative aggregation is an algo-
rithm for solving nearly uncoupled (sometimes called nearly completely decompos-
able) Markov chains, and it is discussed in detail in [38]. Iterative aggregation is not
a general-purpose technique, and it usually does not work for chains that are not
nearly uncoupled. However, the ideas can be adapted to the updating problem, and
these variations work extremely well, even when applied to Markov chains that are
not nearly uncoupled. This is in part due to the fact that the approximate aggrega-
tion matrix (7) differs from the exact aggregation matrix (15) in only one row. Our
iterative aggregation updating algorithm is described below.

Assume that the stationary distribution

φT = (φ1, φ2, . . . , φm)

for some irreducible Markov chain C is already known, perhaps from prior computa-
tions, and suppose that C needs to be updated. As in earlier sections, let the transition
probability matrix and stationary distribution for the updated chain be denoted by
P and

πT = (π1, π2, . . . , πn),

respectively. The updated matrix P is assumed to be irreducible. In applications
such as computing Google’s PageRank [3], irreducibility is guaranteed because small
positive values are added to each entry resulting in P > 0. It is important to note that
m is not necessarily equal to n because the updating process allows for the addition
or deletion of states as well as the alteration of transition probabilities.

The Iterative Aggregation Updating Algorithm

Initialization
i. Partition the states of the updated chain as S = G ∪ G and reorder P as

described in (6)

ii. φ
T ←− the components from φT that correspond to the states in G

iii. sT ←− φ
T
/(φ

T
e) (an initial approximate censored distribution)
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Iterate until convergence

1. A ←−
(

P11 P12e

sTP21 1 − sTP21e

)
(g+1)×(g+1)

( g = |G| )

2. αT ←− (α1, α2, . . . , αg, αg+1) (the stationary distribution of A)

3. χT ←−
(
α1, α2, . . . , αg |αg+1s

T
)

4. ψT ←− χTP (see note following the algorithm)

5. If ‖ψT − χT ‖ < τ for a given tolerance τ , then quit—else sT ←− ψT /ψTe
and go to step 1

Note concerning step 4. Step 4 is necessary because the vector χT generated
in step 3 is a fixed point in the sense that if step 4 is omitted and the process is
restarted using χT instead of ψT , then the same χT is simply reproduced at step 3
on each subsequent iteration. Step 4 has two purposes—it moves the iterate off the
fixed point while simultaneously contributing to the convergence process. That is, the
ψT resulting from step 4 can be used to restart the algorithm as well as produce a
better approximation because applying a power step makes small progress toward the
stationary solution. In the past, some authors [38] have used Gauss–Seidel in place
of the power method at step 4.

While precise rates of convergence for general iterative aggregation algorithms
are difficult to articulate, the specialized nature of our iterative aggregation updating
algorithm allows us to easily establish its rate of convergence. The following theorem
shows that this rate is directly dependent on how fast the powers of the one significant
stochastic complement S = P22 +P21(I−P11)

−1P12 converge. In other words, since
S is an irreducible stochastic matrix, the rate of convergence is completely dictated
by the magnitude and Jordan structure of the largest subdominant eigenvalue of S.

Theorem 7.1. The iterative aggregation updating algorithm defined above con-
verges to the stationary distribution πT of P for all partitions S = G ∪ G. The
rate at which the iterates converge to πT is exactly the rate at which the powers Sn

converge, which is governed by the magnitude and Jordan structure of largest subdom-
inant eigenvalue λ2(S) of S. If λ2(S) is real and simple, then the asymptotic rate of
convergence is R = − log10 |λ2(S)|.

Proof. For any initial probability vector sT (0), let A(n), αT (n), χT (n), ψT (n),
and sT (n) denote the respective results from steps 1–5 after n iterations of the iterative
aggregation updating algorithm. A few straightforward calculations reveal that

A(n + 1) =

(
P11 P12e

sT (n)P21 1 − sT (n)P21e

)
,

αT (n + 1) = βn+1

(
sT (n)P21(I − P11)

−1 | 1
)
,

where βn+1 =
(
1 + sT (n)P21(I − P11)

−1e
)−1

[23, p. 458],

χT (n + 1) = βn+1

(
sT (n)P21(I − P11)

−1 | sT (n)
)
,

ψT (n + 1) = βn+1

(
sT (n)P21(I − P11)

−1 | sT (n)S
)
,

sT (n + 1) = sT (n)S = sT (0)Sn.

This makes it clear that sT (n) → sT (the censored distribution associated with S)
independent of the initial value sT (0) and that the rate of convergence is exactly the
rate at which Sn → esT . As sT (n) → sT , we have

βn → β =
(
1 + sTP21(I − P11)

−1e
)−1
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and

ψT (n) → β
(
sTP21(I − P11)

−1 | sT
)

= πT .

8. Determining the partition. The iterative aggregation updating algorithm
is globally convergent, and it never requires more iterations than the power method
to attain a given level of convergence [17]. However, iterative aggregation clearly
requires more work per iteration than the power method. One iteration of iterative
aggregation requires forming the aggregation matrix, solving for its stationary vector,
and executing one power iteration. The key to realizing an improvement in iterative
aggregation over the power method rests in properly choosing the partition S = G∪G.
As Theorem 7.1 shows, good partitions are precisely those that yield a stochastic
complement S = P22 + P21(I − P11)

−1P12 whose subdominant eigenvalue λ2(S) is
small in magnitude.

Experience indicates that as |G| = g (the size of P11) becomes larger, iterative
aggregation tends to converge in fewer iterations. But as g becomes larger, each
iteration requires more work, so the trick is to strike an acceptable balance. A small
g that significantly reduces |λ2(S)| is the ideal situation.

Even for moderately sized problems there is an extremely large number of possible
partitions, but there are some useful heuristics that can help guide the choice of G
that will produce reasonably good results. For example, a relatively simple approach
is to take G to be the set of all states “near” the updates, where “near” might be
measured in a graph theoretic sense or else by transient flow (i.e., using the magnitude
of entries of xT

j+1 = xT
j P after j iterations, where j is small, say 5 or 10). In the

absence of any other information, this naive strategy is at least a good place to start.
However, there are usually additional options that lead to even better “G-sets,” and
some of these are described below.

8.1. Partitioning by differing time scales. In most applications involving
irreducible aperiodic Markov chains the components of the nth step distribution vec-
tor do not converge at a uniform rate, and consequently most iterative techniques,
including the power method, often spend the majority of the time in resolving a small
number of components—the slow ones. The slow converging components can be iso-
lated either by monitoring the process for a few iterations or by theoretical means
such as those described in section 2.1. For the PageRank problem, Kamvar et al. [19]
have shown experimentally that a trend is set in the first few iterations, so that one
can classify a state as slow converging or fast converging after just 10 iterations. If the
states corresponding to the slower converging components are placed in G while the
faster converging states are lumped into G, then the iterative aggregation algorithm
concentrates its effort on resolving the smaller number of slow converging states.

In loose terms, the effect of steps 1–3 in the iterative aggregation algorithm is
essentially to make progress toward achieving an equilibrium (or steady state) for a
smaller chain consisting of just the “slow states” in G together with one additional
lumped state that accounts for all “fast states” in G. The power iteration in step
4 moves the entire process ahead on a global basis, so if the slow states in G are
substantially resolved by the relatively cheaper steps 1–3, then not many of the more
costly global power steps are required to push the entire chain toward its global
equilibrium. This is the essence of the original Simon–Ando idea first proposed in
1961 and explained and analyzed in [26, 37]. As g = |G| becomes smaller relative
to n, steps 1–3 become significantly cheaper to execute, and the process converges
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quite rapidly in both iteration count and wall-clock time. Examples and reports on
experiments are given in section 8.3.

In some applications the slow states are particularly easy to identify because they
are the ones having the larger stationary probabilities. This is a particularly nice
state of affairs for the updating problem because we have the stationary probabilities
from the prior period at our disposal, and thus all we have to do to construct a good
G-set is to include the states with prior large stationary probabilities and throw in
the states that were added or updated along with a few of their nearest neighbors.
Clearly, this is an advantage only when there are just a few “large” states. However,
it turns out that this is a characteristic feature of Google’s PageRank application and
other scale-free networks with power-law distributions. This is explained in the next
section.

8.2. Scale-free networks and Google’s PageRank. As discussed in [1, 2, 5,
10], the link structure of the World Wide Web constitutes a scale-free network. This
means that the number of nodes n(l) having l edges (possibly directed) is proportional
to l−k, where k is a constant that does not change as the network expands (hence the
term “scale-free”). In other words, the distribution of nodal degrees obeys a power-law
distribution in the sense that

P [deg(N) = d] ∝ 1

dk
for some k > 1 (∝ means “proportional to”).

For example, studies [1, 2, 5, 10] have shown that for the World Wide Web the
parameter for the indegree power-law distribution is k ≈ 2.1, while the outdegree
distribution has k ≈ 2.7. The growth rate of the World Wide Web is tremendous, and
the rapidly accumulating wealth of information contained therein is staggering, so the
scale-free nature of the Web becomes important if the Web is to be harnessed.

The vast amount of knowledge would, for the most part, be inaccessible if it
were not for Web search engines, and Google is the reigning champion in the search
engine business. At the heart of Google is its innovative PageRank concept [3, 4],
which is a process for assigning to each Web page a value that determines the order
of presentation in reply to a query. PageRanks, in their purest form, are simply
stationary probabilities for a particular Markov chain (described below). However, in
practice, Google tweaks the mathematical PageRanks with proprietary “metrics” to
create the final values that are used when matching a user’s query. Notwithstanding
the tweaking, the mathematics is the fundamental component of PageRank, and this
is what we focus on.

In the remainder of this article, we consider PageRank to be the stationary prob-
ability distribution vector πT for an irreducible aperiodic Markov chain whose tran-
sition probability matrix has the form

Pn×n = αS + (1 − α)evT ,

in which S = H + E is a stochastic matrix involving the Web’s raw hyperlink matrix
H defined by

hij =

{
1/(total # outlinks from page Pi) if Pi contains a link to Pj ,

0 otherwise

and a modification matrix E that accounts for “dangling nodes” (pages with no out-
links). Vector e is a column of ones, vT is a “personalization” probability vector
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that gives Google flexibility to perform customization, and 0 < α < 1 is Google’s
parameter that models a Web surfer’s propensity to deviate from the underlying link
structure; i.e., with probability (1− α) a Web surfer requests a “random” Web page.
For more details concerning these and other features of PageRank, see [21, 22].

Of course, the scale is enormous—currently n = O(109)—and a recent MATLAB
publication [33] characterized PageRank as “the world’s largest matrix computation”
with execution times measured in days. In building a search engine for a linked
database in which the link structure is static (or nearly so), a large computational
cost to determine PageRank might be tolerable because once πT is determined the
search engine can use it repeatedly. However, the World Wide Web is a dynamic
network in which pages and links between them are being added and deleted almost
continuously, so the problem of updating πT is important and substantial. At the
2002 national SIAM meeting in Philadelphia (which is the last public disclosure that
the authors are aware of) Google’s Director of Technology Craig Silverstein went on
record as saying that at that time it had no more effective way to deal with the global
updating of PageRank other than by starting from scratch every three or four weeks.
Furthermore, the PageRank vectors from prior periods were not used to determine
PageRank for a current period. Google has, no doubt, made progress on this problem
since 2002, but they are not talking. While local updating for popular sites seems to
be more frequent, observation suggests that the time between complete global updates
may still be an issue.

8.3. Experiments with power-law distributions. The scale-free nature of
the Web translates into a power-law distribution of PageRanks—experiments de-
scribed in [10, 34] indicate that PageRank has a power-law distribution whose pa-
rameter is k ≈ 2.1. In other words, there are relatively very few pages that have a
significant PageRank, while the overwhelming majority of pages have a nearly negli-
gible PageRank.

Consequently, when PageRanks are plotted in order of decreasing magnitude, the
resulting graph has a pronounced “L-shape” with an extremely sharp bend. It is
this characteristic “L-shape” of PageRank distributions that reveals a near optimal
partition S = G ∪G for the iterative aggregation updating algorithm described in
section 7, hereafter referred to as IAD.

To illustrate this point, we report on experiments derived from Web crawls per-
taining to six specialized topics:

Topic #Pages #Links

Movies 451 713
MathWorks 517 13,531
Censorship 562 736
Abortion 1,693 4,325
Genetics 2,952 6,485
California 9,664 16,150

When the PageRanks for these datasets are plotted in order of decreasing mag-
nitude, the characteristic L-shapes are apparent. A horizontal axis in Figure 1 repre-
sents components of a PageRank vector in order of decreasing magnitude, and on the
vertical axis are the corresponding magnitudes of the PageRank.

In an attempt to discern characteristics of good partitions, several experiments
were performed on these six datasets. After the initial PageRanks were computed,
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Fig. 1. PageRanks for six datasets.

each dataset was updated by adding some new pages and deleting some old ones, in
addition to adding some new links and deleting some old links. Except for the larger
California dataset, thirty new pages were added and twenty old ones were deleted,
while fifty new links were created and twenty old ones were removed. For California,
thirty new pages were added, three hundred old ones were removed, two hundred
new links were added, and fifty old links were removed.1 For each dataset, several
partitions S = G ∪ G were constructed by first placing new states and the states
that were altered (along with their nearest neighbors) into G, and then additional
states were successively added to G in order of the magnitude of prior PageRanks.
The IAD of section 7 was executed in MATLAB for each trial partition. Termination
was always when the residual 1-norm dropped below 10−10. The experimental results
concerning iteration counts as well as total execution times (in seconds) are reported
in Tables 1 and 2.

For the purpose of baseline comparisons, the iteration counts and execution times
for the power method are given at the bottom of each table along with the relative
improvement afforded by our IAD when the best observed G-partition was employed.
A star (
) in a table indicates that there was no experiment at the indicated size
g = |G| because g exceeds the number of pages in the dataset.

8.4. Experimental conclusions. While these experiments are small when com-
pared to the scale of the entire World Wide Web, they nevertheless reveal some in-
teresting patterns that are summarized below.

1Different values here had little effect on the performance of the algorithm.
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Table 1

Experimental results for Movies, Censorship, and MathWorks.

Movies MathWorks Censorship
(gopt ≈ 50) (gopt ≈ 50) (gopt ≈ 100)

g = |G| Iterations Time Iterations Time Iterations Time

5 23 .018 66 .362 41 .062
10 13 .017 64 .329 41 .046
15 13 .016 64 .332 40 .045
20 13 .015 50 .295 20 .024
25 12 .016 46 .291 20 .025
50 12 .015∗ 19 .207∗ 13 .019
100 10 .016 18 .224 9 .017∗

200 9 .018 16 .284 9 .019
300 9 .021 11 .265 9 .022
400 7 .021 8 .278 9 .026

Power method 22 .017 69 .255 42 .031
∗Improvement 11.8% 18.8% 45.2%

Table 2

Experimental results for Abortion, Genetics, and California.

Abortion Genetics California
(gopt ≈ 250) (gopt ≈ 250) (gopt ≈ 2000)

g = |G| Iterations Time Iterations Time Iterations Time

10 165 .773 163 2.16 170 7.75
50 58 .256 19 .483 75 3.56
100 14 .159 19 .456 57 3.75
250 13 .140∗ 17 .276∗ 51 2.59
500 7 .199 9 .313 34 2.01
1000 7 .194 8 .319 19 1.03
2000 � � 6 .393 10 .997∗

3000 � � � � 7 1.17
4000 � � � � 7 1.22
5000 � � � � 7 1.56

Power method 168 .449 165 1.45 176 5.87
∗Improvement 68.8% 81% 83%

• G-sets can always exist for which the iterative aggregation technique provides
a significant improvement over the power method.

• The improvements become more pronounced as the size of the datasets in-
creases.

• Good G-sets can be constructed by including states affected by updated infor-
mation along with a few states that are associated with the largest stationary
probabilities from the preupdated distribution.

• As g = |G| increases, the performance of IAD (as measured by execution time)
improves up to some point, but increasing g beyond this point degrades the
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performance of IAD. How to determine a priori a nearly optimal size for G is
discussed in section 8.5.

• Finally, when IAD is used as an updating technique, the fact that updates
might change the problem size is of little or no consequence. This is an
extremely important feature because dealing with issues caused by adding or
deleting states is generally a major problem for most updating applications.

8.5. Near optimal G-sets and L-curves. As observed above, IAD performs
well by using a G-set that includes states affected by updated information along with
states that are associated with the largest stationary probabilities from the preupdated
distribution. But since the performance of IAD is dependent on the size of such a G,
it is important to have a mechanism that gauges how many of the largest states from
the preupdated distribution should be included in G. By examining the approximate
values of gopt given in Tables 1 and 2, it is clear that there is somewhat of a pattern
that relates gopt to the shape of the L-curve for the power-law distribution. To see
this, superimpose the respective values of gopt given in Tables 1 and 2 on the L-curves
given in Figure 1. The results are shown in Figure 2.
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Fig. 2. Location of gopt.

These graphs suggest that when the stationary probabilities of a Markov chain
have a power-law distribution, the size of the G-set used in IAD is nearly optimal
around a point that is just to the right of the pronounced bend in the L-curve. In other
words, an apparent method for constructing a reasonably good partition S = G ∪G
for IAD updating is as follows.

1. First put all new states and states with altered links (perhaps along with
some nearest neighbors) into G.
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2. Add other states that remain after the update in order of the magnitude of
their prior stationary probabilities up to the point where these stationary
probabilities level off.

Of course, there is some subjectiveness to this strategy. However, the leveling-off
point is relatively easy to discern in distributions having a sharply defined bend in
the L-curve, and only distributions that gradually die away or do not conform to a
power-law distribution are problematic. For example, there is more uncertainty in
choosing the leveling-off point in the three smaller test cases (movies, censorship, and
MathWorks) than in the three larger ones (abortion, genetics, and California), but
being somewhere in the ballpark is generally good enough even when the bend is not
so sharply defined. The results in Tables 1 and 2 indicate how much variation around
gopt can be tolerated without seriously affecting IAD performance, and in all cases
there is a fair amount of leeway.

If, when ordered by magnitude, the stationary probabilities

π(1) ≥ π(2) ≥ · · · ≥ π(n)

for an irreducible Markov chain conform to a power-law distribution so that there are
constants α > 0 and k > 0 such that π(i) ≈ αi−k, then the “leveling-off point” ilevel
can be taken to be the smallest value for which |dπ(i)/di| ≈ ε for some user-defined

tolerance ε. That is, ilevel ≈ (kα/ε)
1/k+1

. This provides a rough estimate of gopt, but
empirical evidence suggests that better estimates require a scaling factor σ(n) that
accounts for the size of the chain; i.e.,

gopt ≈ σ(n)

(
kα

ε

)1/k+1

≈ σ(n)

(
kπ(1)

ε

)1/k+1

.

If this is the case, and if the observations from [10, 34] are correct in the sense that
PageRanks for the entire World Wide Web conform to a power-law distribution with
parameter k = 2.109, then we should have that

gopt ≈ σ(n)

[
2.109π(1)

ε

]1/3.109

.

However, validating this conclusion with a specific scaling factor is beyond the scope
of our data and computational resources.

8.6. The drop-off point. Our experiments also indicate that the number of
IAD iterations required is a nonlinear function of the size of the G-set. As g = |G|
increases, as described in section 8.3, there is initially a sharp drop in the number of
IAD iterations required. After the sharp drop there is a more moderate and steady
decrease in the iteration count as a function of g. But an even more interesting feature
of this phenomenon is that the sharp drop in iteration count occurs at a point that is
more or less independent of the number of nodes or links that are updated.

For example, the graphs in Figure 3 plot the number of IAD iterations against
g = |G| for the MathWorks dataset used in section 8.3 when the updating involves
10, 50, and 100 nodes and links. Regardless of the number of updates, all graphs in
Figure 3 exhibit roughly the same shape, with a drop-off point around 40 or 50, which
is also about the same value for gopt that was determined from the experiments in
Table 1. This phenomenon was generally observed in our other experiments as well.
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Fig. 3. Drop-off points.

Consequently, this suggests that the value of gopt can alternately be characterized
by saying that gopt is approximately equal to the drop-off point in the iteration count.

Theorem 7.1 established that the asymptotic rate of convergence of IAD is gov-
erned by the subdominant eigenvalue λ2 of the one significant stochastic complement
S. Therefore, the drop-off point in the iteration count should be explainable in terms
of a drop-off in the magnitude of λ2 as g = |G| is increased. Indeed, this is corrob-
orated by our experiments. For example, by again using the MathWorks data as a
typical case, it is seen in Table 3 that as g increases, the value of |λ2| decreases rapidly
until g is somewhere around 40 or 50, after which there is only a slow decrease. And
this more or less agrees with the value of gopt that was observed from the data in
Table 1.

Table 3

|λ2| as a function of g = |G|.

g 10 20 30 35 38 40 45 50 100
|λ2| .7206 .6891 .6610 .6054 .4431 .4018 .4012 .4005 .3857

9. Conclusions and future work. An algorithm for updating the stationary
vector of a Markov chain subject to changes in the number of states as well as changes
to the transition probabilities has been introduced and analyzed. This IAD updating
algorithm exploits the old stationary vector to create the new stationary vector, and
numerical experiments suggest it is quite effective. It is superior to the power method
in terms of both iteration count as well as total execution time. The IAD approach
offers room for even greater improvements. For example, the extrapolation technique
introduced in [19] can be employed in conjunction with the IAD introduced in this
article to further accelerate the updating process. Preliminary experiments indicate
that marrying IAD to extrapolation has remarkable promise—results will be reported
in a separate article. Finally, we have demonstrated the applicability of IAD to
updating Google’s PageRank vector.
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