The
Nonnegative Matrix Factorization
in
Data Mining

Amy Langville
langvillea@cofc.edu

Mathematics Department
College of Charleston
Charleston, SC
Outline

Part 1: Historical Developments in Data Mining
- Vector Space Model (1960s-1970s)
- Latent Semantic Indexing (1990s)
- Other VSM decompositions (1990s)

- Applications in Image and Text Mining
- Algorithms
- Current and Future Work
Vector Space Model (1960s and 1970s)

Gerard Salton’s Information Retrieval System
SMART: System for the Mechanical Analysis and Retrieval of Text
(Salton’s Magical Automatic Retriever of Text)

- turn \(n \) textual documents into \(n \) document vectors \(\mathbf{d}_1, \mathbf{d}_2, \ldots, \mathbf{d}_n \)
- create term-by-document matrix \(\mathbf{A}_{m \times n} = [\mathbf{d}_1 | \mathbf{d}_2 | \cdots | \mathbf{d}_n] \)
- to retrieve info., create query vector \(\mathbf{q} \), which is a pseudo-doc
Gerard Salton’s Information Retrieval System

SMART: System for the Mechanical Analysis and Retrieval of Text
(Salton’s Magical Automatic Retriever of Text)

- turn n textual documents into n document vectors d_1, d_2, \ldots, d_n
- create term-by-document matrix $A_{m \times n} = [d_1 \ | \ d_2 \ | \ \cdots \ | \ d_n]$
- to retrieve info., create query vector q, which is a pseudo-doc

GOAL: find doc. d_i closest to q

angular cosine measure used: $\delta_i = \cos \theta_i = \frac{q^T d_i}{\|q\|_2 \|d_i\|_2}$
Latent Semantic Indexing (1990s)

Susan Dumais’s improvement to VSM = LSI

Idea: use low-rank approximation to \(\mathbf{A} \) to filter out noise

\(\mathbf{A}_{m \times n} \): rank \(r \) term-by-document matrix

- SVD: \(\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^T = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T \)
- LSI: use \(\mathbf{A}_k = \sum_{i=1}^{k} \sigma_i \mathbf{u}_i \mathbf{v}_i^T \) in place of \(\mathbf{A} \)
- Why?
 - reduce storage when \(k \ll r \)
 - filter out uncertainty, so that performance on text mining tasks (e.g., query processing and clustering) improves
Properties of SVD

- basis vectors u_i are orthogonal

- u_{ij}, v_{ij} are mixed in sign

\[
A_k = U_k \Sigma_k V_k^T
\]

- U, V are dense

- uniqueness—while there are many SVD algorithms, they all create the same (truncated) factorization

- of all rank-k approximations, A_k is optimal (in Frobenius norm)

\[
\|A - A_k\|_F = \min_{\text{rank}(B) \leq k} \|A - B\|_F
\]
Strengths and Weaknesses of LSI

Strengths

- using A_k in place of A gives improved performance
- dimension reduction considers only essential components of term-by-document matrix, filters out noise
- best rank-k approximation

Weaknesses

- storage—U_k and V_k are usually completely dense
- interpretation of basis vectors u_i is impossible due to mixed signs
- good truncation point k is hard to determine
- orthogonality restriction
Other Low-Rank Approximations

- **QR decomposition**

- **any** \(URV^T \) **factorization**

- **Semidiscrete decomposition (SDD)**

\[
A_k = X_k D_k Y_k^T , \quad \text{where} \quad D_k \quad \text{is diagonal, and elements of} \quad X_k, Y_k \in \{-1, 0, 1\}.
\]
Other Low-Rank Approximations

- QR decomposition
- any URV\(^T\) factorization
- Semidiscrete decomposition (SDD)

\[A_k = X_k D_k Y_k^T \]

where \(D_k \) is diagonal, and elements of \(X_k, Y_k \in \{-1, 0, 1\} \).

BUT

All create basis vectors that are mixed in sign. **Negative** elements make interpretation difficult.
The Power of Positivity

- Positive anything is better than negative nothing.—Elbert Hubbard

- It takes but one positive thought when given a chance to survive and thrive to overpower an entire army of negative thoughts.—Robert H. Schuller

- Learn to think like a winner. Think positive and visualize your strengths.—Vic Braden

- Positive thinking will let you do everything better than negative thinking will.—Zig Ziglar
The Power of Nonnegativity

- **Nonnegative** anything is better than negative nothing. —Elbert Hubbard

- It takes but one **nonnegative** thought when given a chance to survive and thrive to overpower an entire army of negative thoughts. —Robert H. Schuller

- Learn to think like a winner. Think **nonnegative** and visualize your strengths. —Vic Braden

- **Nonnegative** thinking will let you do everything better than negative thinking will. —Zig Ziglar
Nonnegative Matrix Factorization (2000)

Daniel Lee and Sebastian Seung’s Nonnegative Matrix Factorization

Idea: use low-rank approximation with nonnegative factors to improve LSI

\[
A_k = U_k \Sigma_k V_k^T
\]

\[
A_k = W_k H_k
\]
columns of W are the underlying basis vectors, i.e., each of the n columns of A can be built from k columns of W.

columns of H give the weights associated with each basis vector.

$$A_k e_1 = W_k H_{*1} = \begin{bmatrix} \vdots \\ w_1 \\ \vdots \end{bmatrix} h_{11} + \begin{bmatrix} \vdots \\ w_2 \\ \vdots \end{bmatrix} h_{21} + \cdots + \begin{bmatrix} \vdots \\ w_k \\ \vdots \end{bmatrix} h_{k1}$$

$W_k, H_k \geq 0 \Rightarrow$ immediate interpretation (additive parts-based rep.)
Image Mining

NMF

\[W \times H_i = A_i \]

SVD

\[U \times \Sigma V_i = A_i \]
Image Mining Applications

- Data compression
- Find similar images
- Cluster images

Original Image
$r = 400$

Reconstructed Images
$k = 100$
Text Mining

MED dataset ($k = 10$)

Highest Weighted Terms in Basis Vector W_1

1. ventricular
2. aortic
3. septal
4. left
5. defect
6. regurgitation
7. ventricle
8. valve
9. cardiac
10. pressure

Highest Weighted Terms in Basis Vector W_2

1. oxygen
2. flow
3. pressure
4. blood
5. cerebral
6. hypothermia
7. fluid
8. venous
9. arterial
10. perfusion

Highest Weighted Terms in Basis Vector W_5

1. children
2. child
3. autistic
4. speech
5. group
6. early
7. visual
8. anxiety
9. emotional
10. autism

Highest Weighted Terms in Basis Vector W_6

1. kidney
2. marrow
3. dna
4. cells
5. nephrectomy
6. unilateral
7. lymphocyte
8. bone
9. thymidine
10. rats
Text Mining

- **polysems broken across several basis vectors** w_i

<table>
<thead>
<tr>
<th>court</th>
<th>president</th>
</tr>
</thead>
<tbody>
<tr>
<td>government</td>
<td>served</td>
</tr>
<tr>
<td>council</td>
<td>governor</td>
</tr>
<tr>
<td>supreme</td>
<td>secretary</td>
</tr>
<tr>
<td>constitutional</td>
<td>congress</td>
</tr>
<tr>
<td>rights</td>
<td>presidential</td>
</tr>
<tr>
<td>justice</td>
<td>elected</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>flowers</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>leaves</td>
<td>behaviour</td>
</tr>
<tr>
<td>plant</td>
<td>glands</td>
</tr>
<tr>
<td>perennial</td>
<td>contact</td>
</tr>
<tr>
<td>flower</td>
<td>symptoms</td>
</tr>
<tr>
<td>plants</td>
<td>skin</td>
</tr>
<tr>
<td>growing</td>
<td>pain</td>
</tr>
<tr>
<td>annual</td>
<td>infection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>metal</th>
<th>process</th>
<th>method</th>
<th>paper</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>glass</td>
<td>copper</td>
<td>lead</td>
<td>steel</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>person</th>
<th>example</th>
<th>time</th>
<th>people</th>
<th>...</th>
<th>rules</th>
<th>lead</th>
<th>leads</th>
<th>law</th>
</tr>
</thead>
</table>
Text Mining Applications

- Data compression
- Find similar terms
- Find similar documents
- Cluster documents
- Topic detection and tracking
Text Mining Applications

Enron email messages 2001

<table>
<thead>
<tr>
<th>Feature Index (k)</th>
<th>Cluster Size</th>
<th>Topic Description</th>
<th>Dominant Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>497</td>
<td>California</td>
<td>ca, cpuc, gov, socalgas, sempra, org, sce, gmssr, aelaw, ci</td>
</tr>
<tr>
<td>23</td>
<td>43</td>
<td>Louise Kitchen named top woman by Fortune</td>
<td>evp, fortune, britain, woman, ceo, avon, fiorina, cfo, hewlett, packard</td>
</tr>
<tr>
<td>26</td>
<td>231</td>
<td>Fantasy football</td>
<td>game, wr, qb, play, rb, season, injury, updated, fantasy, image</td>
</tr>
<tr>
<td>33</td>
<td>233</td>
<td>Texas longhorn football newsletter</td>
<td>UT, orange, longhorn[s], texas, true, truorange, recruiting, oklahoma, defensive</td>
</tr>
<tr>
<td>34</td>
<td>65</td>
<td>Enron collapse</td>
<td>partnership[s], fastow, shares, sec, stock, shareholder, investors, equity, lay</td>
</tr>
<tr>
<td>39</td>
<td>235</td>
<td>Emails about India</td>
<td>dahbol, dpc, india, mseb, maharashtra, indian, lenders, delhi, foreign, minister</td>
</tr>
<tr>
<td>46</td>
<td>127</td>
<td>Enron collapse</td>
<td>dow, debt, reserved, wall, copyright jones, cents, analysts, reuters, spokesman</td>
</tr>
</tbody>
</table>
Recommendation Systems

A purchase history matrix

\[
A = \begin{pmatrix}
\text{Item 1} & \text{User 1} & \text{User 2} & \ldots & \text{User n} \\
1 & 5 & \ldots & 0 \\
0 & 0 & \ldots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 1 & \ldots & 2
\end{pmatrix}
\]

- Create profiles for classes of users from basis vectors w_i
- Find similar users
- Find similar items
Properties of NMF

- basis vectors w_i are not $\perp \Rightarrow$ can have overlap of topics
- can restrict W, H to be sparse
- $W_k, H_k \geq 0 \Rightarrow$ immediate interpretation (additive parts-based rep.)

 EX: large w_{ij}’s \Rightarrow basis vector w_i is mostly about terms j

 EX: h_{i1} how much doc_1 is pointing in the “direction” of topic vector w_i

\[
A_k e_1 = W_k H_{*1} = \begin{bmatrix} \vdots & \vdots & \vdots \\ w_1 & \vdots & h_{11} + w_2 h_{12} + \cdots + w_k h_{1k} \\ \vdots & \vdots & \vdots \end{bmatrix}
\]

- NMF is algorithm-dependent: W, H not unique
Computation of NMF

(Lee and Seung 2000)

Mean squared error objective function

\[
\min \|A - WH\|_F^2 \quad s.t. \quad W, H \geq 0
\]

Nonlinear Optimization Problem

— convex in \(W \) or \(H \), but not both \(\Rightarrow \) tough to get global min

— huge # unknowns: \(mk \) for \(W \) and \(kn \) for \(H \)

 (EX: \(A_{70K \times 1K} \) and \(k=10 \) topics \(\Rightarrow \) 800K unknowns)

— above objective is one of many possible

— convergence to local min NOT guaranteed for any algorithm
NMF Algorithms

- Multiplicative update rules
 - Lee-Seung 2000
 - Hoyer 2002

- Gradient Descent
 - Hoyer 2004
 - Berry-Plemmons 2004

- Alternating Least Squares
 - Paatero 1994
 - ACLS
 - AHCLLS
NMF Algorithm: Lee and Seung 2000

Mean Squared Error objective function

\[\min_{W,H} \| A - WH \|_F^2 \]
\[\text{s.t. } W, H \geq 0 \]

\[W = \text{abs(randn}(m,k)); \]
\[H = \text{abs(randn}(k,n)); \]
for i = 1 : maxiter

\[H = H .* (W^T A) ./ (W^T WH + 10^{-9}); \]
\[W = W .* (AH^T) ./ (WHH^T + 10^{-9}); \]
end

Many parameters affect performance (k, obj. function, sparsity constraints, algorithm, etc.).

— NMF is not unique!

(proof of convergence to fixed point based on E-M convergence proof)
NMF Algorithm: Lee and Seung 2000

Divergence objective function

\[
\min \sum_{i,j} (A_{ij} \log \frac{A_{ij}}{[WH]_{ij}} - A_{ij} + [WH]_{ij})
\]

s.t. \(W, H \geq 0 \)

\[
W = \text{abs} \left(\text{randn}(m,k) \right);
\]

\[
H = \text{abs} \left(\text{randn}(k,n) \right);
\]

for \(i = 1 : \text{maxiter} \)

\[
H = H .* \left(W^T (A ./ (WH + 10^{-9})) \right) ./ W^T e e^T;
\]

\[
W = W .* \left((A ./ (WH + 10^{-9})) H^T \right) ./ e e^T H^T;
\]

end

(proof of convergence to fixed point based on E-M convergence proof)

(objective function tails off after 50-100 iterations)
Multiplicative Update Summary

Pros
+ convergence theory: guaranteed to converge to fixed point
+ good initialization $W^{(0)}, H^{(0)}$ speeds convergence and gets to better fixed point

Cons
– fixed point may be local min or saddle point
– good initialization $W^{(0)}, H^{(0)}$ speeds convergence and gets to better fixed point
– slow: many M-M multiplications at each iteration
– hundreds/thousands of iterations until convergence
– no sparsity of W and H incorporated into mathematical setup
– 0 elements locked
Multiplicative Update and Locking

During iterations of mult. update algorithms, once an element in \(W \) or \(H \) becomes 0, it can never become positive.

- Implications for \(W \): In order to improve objective function, algorithm can only take terms out, not add terms, to topic vectors.

- Very inflexible: once algorithm starts down a path for a topic vector, it must continue in that vein.

- ALS-type algorithms do not lock elements, greater flexibility allows them to escape from path heading towards poor local min
Sparsity Measures

- Berry et al. \(\| x \|_2^2 \)

- Hoyer \(\text{spar}(x_{n \times 1}) = \frac{\sqrt{n} - \| x \|_1 / \| x \|_2}{\sqrt{n - 1}} \)

- Diversity measure \(E^{(p)}(x) = \sum_{i=1}^{n} |x_i|^p, \ 0 \leq p \leq 1 \)
 \(E^{(p)}(x) = -\sum_{i=1}^{n} |x_i|^p, \ p < 0 \)

Rao and Kreutz-Delgado: algorithms for minimizing \(E^{(p)}(x) \)
s.t. \(Ax = b \), but expensive iterative procedure

- Ideal \(\text{nnz}(x) \) not continuous, NP-hard to use this in optim.
NMF Algorithm: Berry et al. 2004

Gradient Descent–Constrained Least Squares

\[
W = \text{abs}(\text{randn}(m,k)); \\
H = \text{zeros}(k,n); \\
\text{for } i = 1 : \text{maxiter} \\
\quad \text{CLS for } j = 1 : \#\text{docs}, \text{ solve} \\
\quad \quad \min_{H_{\ast j}} \|A_{\ast j} - WH_{\ast j}\|_2^2 + \lambda \|H_{\ast j}\|_2^2 \\
\quad \quad \text{s.t. } H_{\ast j} \geq 0 \\
\quad GD \quad W = W \ast (AH^T) \div (WHH^T + 10^{-9}); \quad \text{(scale cols of } W) \\
\text{end}
\]
NMF Algorithm: Berry et al. 2004

Gradient Descent–Constrained Least Squares

\[W = \text{abs}(\text{randn}(m,k)); \quad \text{(scale cols of } W \text{ to unit norm)} \]

\[H = \text{zeros}(k,n); \]

for \(i = 1 : \text{maxiter} \)

 \[\text{CLS} \quad \text{for } j = 1 : \#\text{docs}, \text{ solve} \]

 \[\min_{H_{*j}} \| A_{*j} - WH_{*j} \|_2^2 + \lambda \| H_{*j} \|_2^2 \]

 \[\text{s.t. } H_{*j} \geq 0 \]

 solve for \(H \): \((W^T W + \lambda I) H = W^T A; \quad \text{(small matrix solve)} \)

 \[\text{GD} \quad W = W .* (A H^T) ./ (W H H^T + 10^{-9}); \quad \text{(scale cols of } W) \]

end

(objective function tails off after 15-30 iterations)
Berry et al. 2004 Summary

Pros

+ fast: less work per iteration than most other NMF algorithms
+ fast: small # of iterations until convergence
+ sparsity parameter for \(H \)

Cons

– 0 elements in \(W \) are locked
– no sparsity parameter for \(W \)
– ad hoc nonnegativity: negative elements in \(H \) are set to 0, could run \texttt{lsqnonneg} or \texttt{snnls} instead
– no convergence theory
PMF Algorithm: Paatero & Tapper 1994

Mean Squared Error—Alternating Least Squares

\[
\min_{W, H} \| A - WH \|_F^2
\]
\[
s.t. \quad W, H \geq 0
\]

\[
W = \text{abs}(\text{randn}(m,k));
\]

for \(i = 1 : \text{maxiter} \)

 for \(j = 1 : \text{#docs}, \text{solve} \)

 \[
 \min_{H_{*j}} \| A_{*j} - WH_{*j} \|_2^2
 \]
 \[
 s.t. \quad H_{*j} \geq 0
 \]

 end

 for \(j = 1 : \text{#terms}, \text{solve} \)

 \[
 \min_{W_{j*}} \| A_{j*} - W_{j*}H \|_2^2
 \]
 \[
 s.t. \quad W_{j*} \geq 0
 \]

end
ALS Algorithm

\[
W = \text{abs}(\text{randn}(m,k));
\]
for \(i = 1 : \text{maxiter}\)

- **LS** solve matrix equation \(W^T WH = W^T A\) for \(H\)

\[
H = H. * (H >= 0)
\]

- **NONNEG**

- **LS** solve matrix equation \(HH^T W^T = HA^T\) for \(W\)

\[
W = W. * (W >= 0)
\]

- **NONNEG**

end
ALS Summary

Pros

+ fast
+ works well in practice
+ speedy convergence
+ only need to initialize $W^{(0)}$
+ 0 elements not locked

Cons

– no sparsity of W and H incorporated into mathematical setup
– ad hoc nonnegativity: negative elements are set to 0
– ad hoc sparsity: negative elements are set to 0
– no convergence theory
Alternating Constrained Least Squares

If the very fast ALS works well in practice and no NMF algorithms guarantee convergence to local min, why not use ALS?

\[W = \text{abs} \left(\text{randn}(m, k) \right); \]

\[\text{for } i = 1 : \text{maxiter} \]

\[\text{CLS } \text{for } j = 1 : \#\text{docs}, \text{ solve} \]

\[\min_{H_{*j}} \left\| A_{*j} - WH_{*j} \right\|_2^2 + \lambda_H \left\| H_{*j} \right\|_2^2 \]

\[\text{s.t. } H_{*j} \geq 0 \]

\[\text{CLS } \text{for } j = 1 : \#\text{terms}, \text{ solve} \]

\[\min_{W_{j*}} \left\| A_{j*} - W_{j*}H \right\|_2^2 + \lambda_W \left\| W_{j*} \right\|_2^2 \]

\[\text{s.t. } W_{j*} \geq 0 \]

end
Alternating Constrained Least Squares

If the very fast ALS works well in practice and no NMF algorithms guarantee convergence to local min, why not use ALS?

\[W = \text{abs}(ext{randn}(m,k)) \]

for \(i = 1 \) : maxiter

\[\text{CLS} \quad \text{solve for } H : \quad (W^T W + \lambda_H I) \quad H = W^T A \]

\[\text{NONNEG} \quad H = H. * (H >= 0) \]

\[\text{CLS} \quad \text{solve for } W : \quad (H^T H + \lambda_W I) \quad W^T = H A^T \]

\[\text{NONNEG} \quad W = W. * (W >= 0) \]

end
ACLIS Summary

Pros

+ fast: 6.6 sec vs. 9.8 sec (gd-cls)
+ works well in practice
+ speedy convergence
+ only need to initialize $W^{(0)}$
+ 0 elements not locked
+ allows for sparsity in both W and H

Cons

– ad hoc nonnegativity: after LS, negative elements set to 0, could run lsqnonneg or snlsls instead (doesn’t improve accuracy much)
– no convergence theory
ACLS + spar(x)

Is there a better way to measure sparsity and still maintain speed of ACLS?

\[
\text{spar}(x_{n\times 1}) = \frac{\sqrt{n} - \|x\|_1/\|x\|_2}{\sqrt{n-1}} \quad \Leftrightarrow \quad ((1 - \text{spar}(x))\sqrt{n} + \text{spar}(x))\|x\|_2 - \|x\|_1 = 0
\]

\[
(\text{spar}(W_{j*}) = \alpha_W \text{ and } \text{spar}(H_{j*}) = \alpha_H)
\]

\[
W = \text{abs} \left(\text{randn}(m,k) \right);
\]

for i = 1 : maxiter

CLS for j = 1 : #docs, solve

\[
\min_{H_{j*}} \|A_{j*} - WH_{j*}\|_2^2 + \lambda_H \left(((1 - \alpha_H)\sqrt{k} + \alpha_H)\|H_{j*}\|_2^2 - \|H_{j*}\|_1 \right)
\]

s.t. \(H_{j*} \geq 0 \)

CLS for j = 1 : #terms, solve

\[
\min_{W_{j*}} \|A_{j*} - W_{j*}H\|_2^2 + \lambda_W \left(((1 - \alpha_W)\sqrt{k} + \alpha_W)\|W_{j*}\|_2^2 - \|W_{j*}\|_1 \right)
\]

s.t. \(W_{j*} \geq 0 \)

end
AHCLS

\(\text{spar}(W_{j*}) = \alpha_W \) and \(\text{spar}(H_{*j}) = \alpha_H \)

\[W = \text{abs}(\text{randn}(m,k)); \]
\[\beta_H = ((1 - \alpha_H)\sqrt{k} + \alpha_H)^2 \]
\[\beta_W = ((1 - \alpha_W)\sqrt{k} + \alpha_W)^2 \]

for \(i = 1 : \text{maxiter} \)

CLS

solve for \(H: \) \((W^TW + \lambda_H\beta_H I - \lambda_H E) H = W^T A \)

NONNEG \(H = H. \ast (H \geq 0) \)

CLS

solve for \(W: \) \((HH^T + \lambda_W\beta_W I - \lambda_W E) W^T = HA^T \)

NONNEG \(W = W. \ast (W \geq 0) \)

end
AHCLS Summary

Pros

+ fast: 6.8 vs. 9.8 sec (gd-cls)
+ works well in practice
+ speedy convergence
+ only need to initialize $W^{(0)}$
+ 0 elements not \textit{locked}
+ allows for \textit{more explicit} sparsity in both W and H

Cons

- ad hoc nonnegativity: after LS, negative elements set to 0, could run lsqnonneg or snnls instead (doesn’t improve accuracy much)
- no convergence theory
Strengths and Weaknesses of NMF

Strengths

- Great Interpretability
- Performance for data mining tasks comparable to LSI
- Sparsity of factorization allows for significant storage savings
- Scalability good as k, m, n increase
- Possibly faster computation time than SVD

Weaknesses

- Factorization is not unique \Rightarrow dependency on algorithm and parameters
- Unable to reduce the size of the basis without recomputing the NMF
Current NMF Research

- Algorithms
- Alternative Objective Functions
- Convergence Criterion
- Updating NMF
- Initializing NMF
- Choosing k
Extensions for NMF

Tensor NMF

\[p \text{-way factorization} \quad A = A_1 A_2 \ldots A_p \quad A, A_i \geq 0 \]

Embedded NMF

\[A = \text{term}(A_1) \quad \text{topic}(A_2), \quad \text{then} \quad A_1 = \text{term}(B_1) \quad \text{subtopic}(B_2). \]

NMF on Web’s hyperlink matrix

\[A = \begin{pmatrix}
\text{node 1} & \text{node 2} & \ldots & \text{node n} \\
\text{term 1} & 1 & 5 & \ldots & 0 \\
\text{term 2} & 0 & 0 & \ldots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\text{term m} & 0 & 1 & \ldots & 2
\end{pmatrix} \]

— terms from anchor text create \(A \)