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SUMMARY

Many very large Markov chains can be modelled e�ciently as stochastic automata networks (SANs).
A SAN is composed of individual automata which, for the most part, act independently, requiring only
infrequent interaction. SANs represent the generator matrix Q of the underlying Markov chain compactly
as the sum of Kronecker products of smaller matrices. Thus, storage savings are immediate. The bene�t
of a SAN’s compact representation, known as the descriptor, is often outweighed by its tendency to make
analysis of the underlying Markov chain tough. While iterative or projections methods have been used
to solve the system �Q=0, the time until these methods converge to the stationary solution � is still
unsatisfactory. SAN’s compact representation has made the next logical research step of preconditioning
thorny. Several preconditioners for SANs have been proposed and tested, yet each has enjoyed little
or no success. Encouraged by the recent success of approximate inverses as preconditioners, we have
explored their potential as SAN preconditioners. One particularly relevant �nding on approximate inverse
preconditioning is the nearest Kronecker product approximation discovered by Pitsianis and Van Loan.
In this paper, we extend the nearest Kronecker product technique to approximate the Q matrix for an
SAN with a Kronecker product, A1 ⊗A2 ⊗ · · · ⊗AN . Then, we take M =A−1

1 ⊗A−1
2 ⊗ · · · ⊗A−1

N as our
SAN NKP preconditioner. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A very large Markov chain has a very large state space requiring extensive storage and
making analysis di�cult. Many large Markov chains can be e�ectively de�ned and analysed
using the newer model of stochastic automata networks (SANs). SANs represent the generator
matrix Q compactly; thus storage savings are immediate. As long as the analysis of the SAN
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remains reasonable, we have realized signi�cant savings over the Markov chain model with
its state space explosion problem.
SANs were �rst proposed by Plateau [1] in 1985 and have been actively researched since.

A SAN is a collection of individual stochastic automata that generally act independently of
one another, requiring only infrequent interaction. Given this description, it is easy to see
why SANs have been successfully applied to parallel systems such as shared memory or
communicating processes. Each automaton is represented by a set of states and transitions
which model the movement from one state to another. The state of an automaton at time t is
given by the state it occupies at time t. The global state, the state of the SAN, at time t is
the state of each of its automata.
The global state may change when a transition occurs. Transitions can be either local or

synchronizing. Local transitions only a�ect the corresponding automata. When an automata
has a local transition, it moves from one of its states to another of its states. Synchronizing
transitions are not local. They a�ect the global state by changing the state of several automata.
A synchronizing transition occurs when one automaton enables a transition to occur in two
or more other automata.
We also make another distinction between transitions. They can be either constant or func-

tional. A functional transition occurs when an automaton’s transition rate is a function of the
state of another automaton. Transitions that are not functional are called constant. Constant
or functional transitions, unlike synchronizing transitions, a�ect only the local automata in-
volved. Note that synchronizing transitions may be constant or functional. This information
regarding the automata and their types of transitions provides all the information needed to
formally de�ne a SAN, as Atif and Plateau have done [2]. While this infrequent interaction
(synchronizing transitions and functional transition rates) does complicate SANs, Plateau and
her co-workers have shown that the SAN can still be represented in compact form as a sum
of Kronecker products, known as the SAN descriptor [1, 3, 4]. Of course, too much interaction
may complicate the SAN model to the point that all savings have been lost. Therefore, SAN
models should be restricted to systems with appropriate infrequent interaction.
As emphasized above, SANs with their compact representation (the descriptor) clearly save

storage in the modelling of parallel systems, which have automata acting independently for the
most part with only occasional interaction. But storage savings alone are useless if model anal-
ysis cannot be done e�ciently. One type of model analysis involves determining the transient
probability distribution for the system. Another type of analysis determines the system’s sta-
tionary probability distribution. It is this type of analysis that we study in the present project.
Since SANs are intimately tied to Markov chains, we begin by studying the stationary solution
techniques for Markov chains. There are three primary classes of solution techniques: direct
methods, iterative methods and projection methods. Direct methods for solving linear systems,
such as those based on LU decompositions, are not immediately amenable to SANs because
the SAN’s compact descriptor representation of the generator matrix precludes easy access
to the L, U factors. Furthermore, SANs are used as a compact, alternative representation for
very large Markov models. The size of such models makes direct methods impractical [4]. To
circumvent the state space explosion problem associated with these large systems, Atif and
Buchholz have de�ned equivalence relations for SANs, thereby providing an equivalent SAN
of smaller size [5, 6]. Nevertheless, direct methods are not the methods of choice for SANs.
In contrast, iterative and projection methods for solving linear systems have been studied

extensively, and some of these methods have been successfully applied to SANs. In solving
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a SAN for the stationary solution, one can always expand the information for local automata
and transitions to create the two-dimensional global generator matrix and then apply a stan-
dard iterative method to the global Markov model. Philippe, Saad, Stewart and Wu discuss
numerical methods for Markov chains in [4, 7, 8]. However, since the value of SANs lies
in their storage-saving, compact representation of the Markov model, researchers rarely use
expansion to obtain the two-dimensional global generator matrix. This would be counter to
the purpose of using a SAN. For example, ten stochastic automata, each with ten states and
a dense transition matrix, result in an expanded global matrix with 1010 elements [4]. This
example explains why research has focused on computation of the global stationary proba-
bilities by using the individual automata information contained in the descriptor without ever
generating the two-dimensional global matrix.
Toward this end, the classical iterative methods of Gauss–Seidel, and SOR as well as

the aggregation=disaggregation methods cannot be easily used [8], although Dayar has done
some work with the Gauss–Seidel method [9, 10]. However, iterative methods whose only
interaction with the coe�cient matrix involves computing a vector–matrix product have been
employed to compute the stationary probabilities for SANs. Since SANs use descriptors rather
than matrices to represent the system and its transitions, such methods incorporate the e�cient
vector-Kronecker product multiplication algorithm described in Reference [11]. These methods
include the power method and projection methods such as GMRES and Arnoldi. The GMRES
and Arnoldi methods have been found to outperform the power method when applied to
SANs [12]. The previously considered projection methods, GMRES and Arnoldi, both use
long recurrences. This requires a large number of vectors to be stored, thereby increasing
the work at each iteration. Projection methods with shorter recurrences, namely BiCGSTAB,
CGS and TFQMR have also been used [13]. Without preconditioners, BiCGSTAB, CGS and
TFQMR seemed comparable to GMRES and Arnoldi in terms of iteration count and running
time. Preconditioned BiCGSTAB, CGS and TFQMR generally outperformed preconditioned
GMRES and Arnoldi.
As SANs are so closely related to Markov chains, studying techniques that accelerate

convergence of iterative methods applied to Markov chains might also help to accelerate
convergence in SANs. Preconditioning is a popular means of achieving improved conver-
gence of iterative methods. Preconditioning for Markov models is reviewed in References
[4, 7, 14]. Preconditioners based on incomplete LU factorizations, which have been success-
fully employed in Markov models, cannot be readily used for SANs for the same reasons
that direct methods based on L, U factors cannot be used [12]. A SAN preconditioner
based on the Neumann series was proposed in Reference [12]. Yet such a preconditioner
is computationally too expensive to compute, as experiments showed. While the number
of iterations needed for convergence decreased, the running time per iteration increased.
In fact, the results presented in Reference [12] showed that no real bene�t was derived
from that particular preconditioner, emphasizing the need for better preconditioners. Precon-
ditioners have also been applied to the projection methods of BiCGSTAB, CGS, TFQMR
[13]. These preconditioners, which were extensions of the Neumann preconditioner, required
less work to generate and resulted in a reduction in overall solution time. However, much
more work remains to be done to develop e�cient preconditioners, especially for very large
systems.
Our aim is to address this need by examining the plausibility of one particular approximate

preconditioner, the nearest Kronecker product approximate preconditioner. This preconditioner
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can then be used with any of the iterative or projection methods in order to compute stationary
probabilities.

2. ITERATIVE METHODS

In this paper we restrict ourselves to the problem of �nding the stationary solution vector of a
large Markov chain represented as a SAN. The results can also be applied to certain methods
for computing transient solutions. Throughout this paper, � is a row vector representing the
stationary solution of a continuous-time ergodic Markov chain. Unless stated otherwise, all
other vectors are column vectors. The column vector e is the vector of all 1’s.
In general, the computation of the stationary solution � of a continuous-time ergodic Markov

chain involves solving the linear system �Q=0 and �e=1, where Q is the in�nitesimal
generator of the Markov chain and e represents the unit row vector. Q is singular with rank
n−1. Thus, �nding the stationary solution of a continuous-time Markov chain can be viewed
as a linear system problem. Another way to view the same problem is as an eigenvalue
problem. P is the transition probability matrix associated with the same system. In fact,
P= I + �tQ where �t61=max |qii|. P is a stochastic matrix with a unit eigenvalue. Then
�nding the stationary solution � involves solving �=�P, which is an eigenvalue problem.
Now this eigenvalue problem can be used to de�ne the power method, an iterative method
for �nding � by computing iterates with

x(k+1) = x(k)P

With a suitable initial row vector iterate x(0), x(k+1) will converge to the eigenvector � which
can then be normalized so that � contains the stationary solution.
Very large Markov chains are often represented as SANs using the SAN descriptor in place

of Q. Namely, Q=
∑T

j=1 ⊗N
i=1Q

(i)
j , where T =2E + N , E is the number of synchronizing

events and N is the number of automata. Since P= I +�tQ, then in the SAN formalism,

P= I +�tQ=⊗N
i=1 Ini +

T∑
j=1
�t⊗N

i=1Q
(i)
j

and the power method for SANs can be written as

x(k+1) = x(k)(I +�tQ)= x(k) + �tx(k)
(

T∑
j=1

⊗N
i=1Q

(i)
j

)

The power method is the simplest of all iterative methods for �nding the stationary solution
vector �. The Jacobi, Gauss–Seidel and SOR method are three more iterative methods used
for solving linear systems, such as our homogeneous linear system �Q=0. Yet these methods
are based on splittings of the transition matrix and thus are not easily transferable to the SAN
formalism. Another class of iterative methods is that of projection methods. These methods
approximate an exact solution (in our case, the stationary solution) by building better and
better approximations which are taken from small-dimension subspaces. Some popular pro-
jection methods are Arnoldi, GMRES, CGS, BiCGSTAB and QMR. Such projection methods
can be and have been applied to SANs [12, 13, 15].

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:723–752



A KRONECKER PRODUCT APPROXIMATE PRECONDITIONER FOR SANS 727

3. PRECONDITIONING

It is well known that the iterative methods discussed above perform better when precondi-
tioners are used. The convergence of an iterative method depends on the eigenvalues of the
system. Any iterative method can converge slowly if the eigenvalue distribution is undesir-
able for that method. For example, when the subdominant eigenvalue of the iteration matrix is
close to the dominant eigenvalue (which is 1 for our transition matrices P), the power method
converges slowly. Thus, the goal of preconditioning is to modify the eigenvalue distribution
of the iteration matrix so that convergence is improved while the solution remains unchanged.
In general, for the linear system Ay= b, we introduce the preconditioning matrix M , so

that MAy=Mb. We hope that M is a good approximation of A−1 and thus convergence will
be rapid.
For Markov chain problems, the preconditioned power method becomes

x(k+1) = x(k)(I − (I − P)M)

Since the matrix (I−P) is singular with rank (n−1), M is chosen to be a good approximation
of a generalized inverse of (I −P) [16]. Thus for SANs, the preconditioned power method is

x(k+1) = x(k)(I − (I − (I +�tQ))M)

= x(k)(I +�tQM)

= x(k) + �tx(k)QM

= x(k) + �tx(k)
(

T∑
j=1

⊗N
i=1Q

(i)
j

)
M

The problem now becomes that of �nding a suitable preconditioner M that �ts nicely into
the SAN formalism. A popular set of preconditioners, ILU preconditioners, have largely been
dismissed from consideration. Recall that the problem with adapting ILU preconditioners to
SANs (for use in an iterative method, like the preconditioned power method) is that they
are based on incomplete LU factorizations of the transition matrix. SANs store the transition
matrix information as a sum of Kronecker products. And thus, an LU factorization of a SAN
descriptor is not easily accessible.

3.1. A SAN preconditioner based on the Neumann series

In Reference [12], Stewart et al. introduce a preconditioner based on the Neumann series.
Since P= I +�tQ, then (I − P)= −�tQ. It has been shown in Reference [17] that

(I − P)# =
∞∑
h=0
(Ph − L)

where L is an n× n matrix with all rows equal to the stationary solution vector � and (I−P)#
is the group inverse of (I − P). An approximation of (I − P)# and thus M can be computed
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by summing over the �rst H terms and substituting the most recent approximation of �, given
in x(k), into each row of L. The preconditioned power method for SANs becomes

x(k+1) = x(k) + �tx(k)Q
(

H∑
h=0
Ph − L̃

)

= x(k) + �tx(k)Q
(

H∑
h=0
Ph
)

−�tx(k)QL̃

where L̃jl=�
(k)
l for all j. Thus, L̃= e�(k) and hence QL̃=(Qe)�(k) = 0, since Q is an in�nites-

imal generator with row sums of zero. Thus, the preconditioned power method for SANs may
be written as

x(k+1) = x(k) + �tx(k)Q
(

H∑
h=0
Ph
)

Writing Q and P as sums of Kronecker products gives

x(k+1) = x(k) + �tx(k)
(

T∑
j=1

⊗N
i=1Q

(i)
j

) H∑
h=0

(
⊗N
i=1 Ini +

T∑
j=1
�t⊗N

i=1Q
(i)
j

)h
By increasing H , the number of terms in the Neumann expansion, we can obtain a more ac-
curate preconditioner and converge to the stationary solution in a smaller number of iterations.
Yet at the same time, as H increases, clearly the computational e�ort needed to obtain this
accurate preconditioner increases. Tests of this preconditioner on a queueing network model
report that no real bene�t was derived from this preconditioner [12].

3.2. A SAN preconditioner based on individual inverses

Another possibility explored by Buchholz [13] is the preconditioner which involves inverses
of the individual automata matrices. This preconditioner is formed so that the repeated vector-
Kronecker product multiplications which make the previous Neumann preconditioner so time
consuming are avoided. Starting with the in�nite sum,

∑∞
h=0 P

h, Q is then split into three
parts.

Q=QD +QL +QS

QD is a diagonal matrix including all diagonal elements of Q. QL represents the local tran-
sitions and thus QL = ⊕N

i=1 Q
(i)
l , where N is the number of automata and Q(i)l represents the

local transition matrix for automata i. QS represents the synchronizing transitions and thus
QS =

∑T
j=1 ⊗N

i=1Q
(i)
s , where T is the number of synchronizing events and Q

(i)
s describes the

e�ect of synchronizing event j on automata i. Thus, since P= I +�tQ,

∞∑
h=0
Ph=

∞∑
h=0
(I +�tQD +�tQL +�tQS)h
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After a great deal of algebraic and Kronecker manipulation [13], it can be shown that

∞∑
h=0
Ph¿

[ ∞∑
h=0
(I +�tQD)h

]
[⊗N

i=1 (I −�tQ(i)l )−1][I +�tQS]

and hence a preconditioner can be de�ned as

M =NDNL(I +�tQS)

where ND =
∑∞

h=0 (I +�tQD)
h, which is a diagonal matrix with element (i; i) equal to −1=�t

QD(i; i) and NL =⊗N
i=1 (I −�tQ(i)l )−1. This preconditioner consists of a diagonal matrix, the

part of Q which corresponds to synchronizing transitions and a part which is the Kronecker
product of inverses of individual automata matrices. These small ni × ni inverse matrices
must be computed and stored as well as the diagonal of the preconditioner. The NL matrix
is a Kronecker product of usually dense matrices, requiring considerable computation time
for the vector-Kronecker product multiplication needed at each iteration. While experiments
showed that this preconditioner required fewer iterations until convergence than unprecondi-
tioned methods, only in some cases did the overall solution times reduce.

3.3. Other SAN preconditioners

Other preconditioners for SANs have also been proposed recently by Plateau et al. [18]. One
preconditioner is based on the additive Schwartz method. Incomplete LU factorizations of the
individual Kronecker terms in the SAN descriptor are formed. The sum of the inverses of
each of these individual Kronecker term matrices is then used as the preconditioning matrix.
Another preconditioner known as multiplicative preconditioning is based on the multiplicative
Schwartz method. In this case, the product, rather than the sum, of the inverses of each in-
dividual Kronecker term matrix is taken as the preconditioner. Numerical experiments with
the additive preconditioner and the multiplicative preconditioner were unsuccessful. One more
preconditioner, which has been studied, is the diagonal preconditioner. This, the simplest of
all preconditioners, uses the inverse of the diagonal elements of Q to form a diagonal precon-
ditioning matrix. This preconditioner provided interesting results. Numerical experimentation
showed that simple diagonal preconditioning reduced the number of iterations without increas-
ing the computation time per iteration!

3.4. An approximate inverse preconditioner: the nearest Kronecker product

Approximate inverse preconditioners have been successfully employed with iterative methods
[12, 19–21]. Our approximate inverse preconditioner, the (Nearest Kronecker Product) NKP
preconditioner, which is based on the Kronecker product approximations in Reference [22],
will be discussed thoroughly in the next section. Pitsianis and Van Loan present a method for
�nding the nearest Kronecker product, A⊗B, for a general matrix R [22]. Since A⊗B≈R, one
would hope that A−1 ⊗B−1 ≈R−1. They de�ned A−1 ⊗B−1 =M as the preconditioner. On a
small example, this preconditioner compared favourably with other preconditioners. This mo-
tivated us to extend this preconditioner to SANs. For Markov chains, we approximate Q#

rather than Q−1. However, the algorithm in Reference [22] almost always gives a nonsingular
A and nonsingular B. Thus, we use the standard inverses, A−1 and B−1, to form the precon-
ditioner. In e�ect, we are using the ideal preconditioner M =A−1 ⊗B−1 for a nearby system
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whose coe�cient matrix Q̂ is almost Q. Finding the small A−1 and B−1 matrices is not too
di�cult and the approximation is good enough for many matrices with inherent Kronecker
structure to provide a preconditioner which reduces the number of iterations without adding
much computational time. The Kronecker approximation for SANs avoids the formation of M ,
instead only A−1 and B−1 are required in the vector-Kronecker product multiplication of the
iterative methods. We were able to extend Pitsianis and Van Loan’s work to �nd any number
of smaller matrices whose Kronecker product approximates the original matrix Q. Thus, we
can �nd A1; A2; : : : ; AN such that A1 ⊗A2 ⊗ · · · ⊗AN ≈Q. We take M =A−1

1 ⊗A−1
2 ⊗ · · · ⊗A−1

N
as the NKP preconditioner for SANs. Our initial results with the NKP preconditioner for
SANs look very promising. A closer look at the work of Pitsianis and Van Loan gives us
insight into our quest for a good SAN preconditioner.

4. THE THEORY BEHIND THE NEAREST KRONECKER PRODUCT

Pitsianis and Van Loan �nd the nearest Kronecker product, A⊗B, for an m1m2 × n1n2 matrix
R. They formulate their problem as follows: �nd matrices A; B so that ‖R− A⊗B‖2F is mini-
mized, where A is an m1 × n1 matrix and B is an m2 × n2 matrix. To this end, they de�ne the
matrix R̃, which is a special rearrangement of R, relative to the blocking parameters m1, m2,
n1 and n2. We use a vectorizing operation which turns a matrix into a vector by stacking the
columns of the matrix. For example, if

R=




r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
r41 r42 r43 r44
r51 r52 r53 r54
r61 r62 r63 r64



; A=

(
a11 a12

a21 a22

)
; and B=



b11 b12

b21 b22

b31 b32




Then,

R̃=



r11 r21 r31 r12 r22 r32
r41 r51 r61 r42 r52 r62
r13 r23 r33 r14 r24 r34
r43 r53 r63 r44 r54 r64


 ; vec(A)=




a11

a21

a12

a22


 ; vec(B)=




b11

b21

b31

b12

b22

b32




If A is m1 × n1, B is m2 × n2, and R is m1m2 × n1n2, then R̃ is m1n1 ×m2n2. To construct R̃,
express the matrix R of dimension m1m2 × n1n2 as m1 × n1 blocks each of size m2 × n2. That is,

R=



R1;1 R1;2 · · · R1; n1
...

. . .
...

Rm1 ;1 Rm1 ;2 · · · Rm1 ; n1



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where Ri; j is a block of size m2 × n2. This partitioning of R depends on the choice of m1 and
n1. Pitsianis and Van Loan form R̃ as

R̃=




vec(R1;1)T

vec(R2;1)T

...

vec(Rm1 ;1)
T

vec(R1;2)T

vec(R2;2)T

...

vec(Rm1 ;2)
T

...

vec(R1; n1)
T

vec(R2; n1)
T

...

vec(Rm1 ; n1)
T




Using this rearrangement operation and the vectorizing operation, Pitsianis and Van Loan
prove that

‖R− A⊗B‖2F = ‖R̃− abT‖2F
where a=vec(A) and b=vec(B) [22]. The original minimization problem is transformed into
the problem of approximating a given matrix R̃ by a rank-1 matrix abT. The solution to this
new problem is derived from the matrix singular value decomposition (SVD). The nearest
rank-p matrix to a given matrix is the �rst p terms in the truncated SVD in dyadic form,∑p

i= 1 �iUiV
T
i , where �i is the ith largest singular value of R̃ and Ui; Vi are the corresponding

left and right singular vectors. Thus, from the SVD of R̃, one realizes that a=�1U1 and
b=V1, where �1 is the largest singular value of R̃ and U1; V1 are the corresponding left and
right singular vectors. The matrix R̃ never needs to be formed explicitly, only a vector-R̃ mul-
tiplication algorithm is needed. In fact, the necessary vectors a; b are obtained from either the
iterative SVD method or the alternating least squares approach as detailed in Reference [22].
When R can be expressed as a sum of p Kronecker products with each product involv-

ing two terms, R=
∑p

i=1 Gi ⊗Fi, then the rearrangement and vectorizing operations give
R̃=

∑p
i=1 gif

T
i , where gi=vec(Gi) and fi=vec(Fi). The most important rami�cation of the
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above statement is that now the optimal A and B matrices are linear combinations of the Gi
and Fi matrices.

A= �1G1 + �2G2 + · · ·+ �pGp
B= �1F1 + �2F2 + · · ·+ �pFp

Theorem 4.1
Let R=

∑p
i=1 Gi ⊗Fi, where Gi is an mG × nG matrix and Fi is an mF × nF matrix. Then the

NKP matrices A and B are given by

A= �1G1 + �2G2 + · · ·+ �pGp
B= �1F1 + �2F2 + · · ·+ �pFp

where A has dimension mG × nG and B has dimension mF × nF . The optimal NKP matrices A
and B are linear combinations of the input matrices Gi and Fi, respectively.

Proof
This proof is not included in Reference [22]. We provide our version of the proof here. First,
we de�ne some useful notation. Let A1 denote the �rst column of matrix A. Suppose R̃ is
square and non-singular. Owing to the special structure of R, we know that R̃=

∑p
i=1 gif

T
i ,

where gi=vec(Gi) and fi=vec(Fi). R̃ has an SVD,

R̃=U

(
D 0

0 0

)
V T

where U is an mGnG ×mGnG matrix, V is mFnF ×mFnF , and D is an r× r diagonal matrix
containing the singular values of R̃ (�1; �2; : : : ; �r) with r being the rank of R̃. For a general
R̃, a=�1U1, where

U1 =

[
R̃V

(
D−1 0

0 0

)]
1

=
1
�1
[R̃V ]1

=
1
�1
R̃V1

Since R̃=
∑p

i=1 gif
T
i ,

U1 =
1
�1

[ p∑
i=1
gifTi

]
V1

=
1
�1

[ p∑
i=1
gifTi V1

]
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Since a=�1U1, we obtain a=
∑p

i=1 gif
T
i V1 in this case. With �i=f

T
i V1 we see that a is a

linear combination of the gis, a=
∑p

i=1 �igi. Reversing the vectorizing operation by turning
the vectors a and gi back into matrices gives the desired result; the matrix A is a linear combi-
nation of the input matrices Gi. The unvectorizing operation just undoes what the vectorizing
operation does. As an example of the unvectorizing operation, consider the vector d obtained
by vectorizing the corresponding matrix mD × nD matrix D. Partition d into nD blocks, each
containing mD elements. The �rst mD elements are the �rst column of the matrix D. After all
the partitions of d are unstacked, the matrix D is available. The proof showing b is a linear
combination of the fis is similar.

Using this fact that the matrices A and B are linear combinations of the Gis and Fis,
the original problem is transformed once again. However, Pitsianis and Van Loan’s problem
transformation given below only holds when Gi and Fi are diagonal or orthogonally similar
to a diagonal matrix.

‖R− A⊗B‖2F =
∣∣∣∣
∣∣∣∣ p∑
i=1
Gi ⊗Fi −

( p∑
i=1
�iGi

)
⊗
( p∑
i=1
�iFi

)∣∣∣∣
∣∣∣∣
2

F

=
nG∑
i=1

nF∑
j=1

[( p∑
k=1
�Gk (i)�Fk ( j)

)
−
( p∑
k=1
�k�Gk (i)

)( p∑
k=1
�k�Fk (i)

)]2

In the above equation, nG is the order of Gi, nF is the order of Fi and �Gk (i) is singular value
i of the matrix Gk . The last equality comes from the fact that the square of the Frobenius
norm of a matrix is equal to the sum of squares of the singular values of the matrix. Since the
R has such a special structure (the sum of Kronecker products of orthogonally diagonalizable
matrices), the singular values can be written in terms of the singular values of the much
smaller matrices, Gi and Fi. Pitsianis and Van Loan choose �1; �2; : : : ; �p; �1; �2; : : : ; �p so that
the above nonlinear function is minimized. They report favourable results with this nonlinear
transformation for �nding the optimal A; B matrices and using them for a preconditioner. This
nearest Kronecker product preconditioner beats the unpreconditioned methods and requires
little computational e�ort on the same example they tested. For the SAN problem the Gi and
Fi, in general, are not orthogonally similar to a diagonal matrix, so this problem transformation
is not helpful. However, we have discovered the much more general and useful problem
transformation provided below:

‖R− A⊗B‖2F =
∣∣∣∣
∣∣∣∣ p∑
i=1
Gi ⊗Fi −

( p∑
i=1
�iGi

)
⊗
( p∑
i=1
�iFi

)∣∣∣∣
∣∣∣∣
2

F

=

(
p∑
i=1

p∑
j=1
tr(GTi Gj) tr(F

T
i Fj)

)

− 2
(

p∑
i=1

[(
p∑
j=1
�j tr(GTi Gj)

)(
p∑
j=1
�j tr(FTi Fj)

)])

+

(
p∑
i=1

p∑
j=1
�i�j tr(GTi Gj)

)(
p∑
i=1

p∑
j=1
�i�j tr(FTi Fj)

)
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This equality comes from the fact that ‖A‖2F = tr(ATA), where tr(A)= trace(A). The proof of
this uses several properties of Kronecker products, namely that tr(A⊗B)= tr(A) tr(B) and
(A⊗B)(C ⊗D)=AC ⊗BD [31]. Below we provide the proof for the simplest case p=2.
This can easily be extended to p¿2 by induction.

Theorem 4.2
Suppose G1 and G2 are square matrices of order nG and F1 and F2 are square matrices of
order nF . Then

‖G1 ⊗F1 +G2 ⊗F2 − (�1G1 + �2G2)⊗ (�1F1 + �2F2)‖2F
= tr(GT1G1) tr(F

T
1 F1) + tr(G

T
1G2) tr(F

T
1 F2)

+tr(GT2G1) tr(F
T
2 F1) + tr(G

T
2G2) tr(F

T
2 F2)

−2(�1 tr(GT1G1) + �2 tr(GT1G2))(�1 tr(FT1 F1) + �2 tr(FT1 F2))
−2(�1 tr(GT2G1) + �2 tr(GT2G2))(�1 tr(FT2 F1) + �2 tr(FT2 F2))
+(�1�1 tr(GT1G1) + �1�2 tr(G

T
1G2) + �2�1 tr(G

T
2G1) + �2�2 tr(G

T
2G2))

× (�1�1 tr(FT1 F1) + �1�2 tr(FT1 F2) + �2�1 tr(FT2 F1) + �2�2 tr(FT2 F2))

Proof

‖G1 ⊗F1 +G2 ⊗F2 − (�1G1 + �2G2)⊗ (�1F1 + �2F2)‖2F
= tr[(GT1 ⊗FT1 +GT2 ⊗FT2 − (�1GT1 + �2GT2 )⊗ (�1FT1 + �2FT2 ))

× (G1 ⊗F1 +G2 ⊗F2 − (�1G1 + �2G2)⊗ (�1F1 + �2F2))]
= tr[(GT1 ⊗FT1 +GT2 ⊗FT2 )(G1 ⊗F1 +G2 ⊗F2)]

−tr[(GT1 ⊗FT1 +GT2 ⊗FT2 )((�1G1 + �2G2)⊗ (�1F1 + �2F2))]
−tr[((�1GT1 + �2GT2 )⊗ (�1FT1 + �2FT2 ))(G1 ⊗F1 +G2 ⊗F2)]
+tr[((�1GT1 + �2G

T
2 )⊗ (�1FT1 + �2FT2 ))((�1G1 + �2G2)⊗ (�1F1 + �2F2))]

= tr[(GT1 ⊗FT1 )(G1 ⊗F1)] + tr[(GT1 ⊗FT1 )(G2 ⊗F2)]
+tr[(GT2 ⊗FT2 )(G1 ⊗F1)] + tr[(GT2 ⊗FT2 )(G2 ⊗F2)]
−2 tr[(GT1 ⊗FT1 )((�1G1 + �2G2)⊗ (�1F1 + �2F2))]
−2 tr[(GT2 ⊗FT2 )((�1G1 + �2G2)⊗ (�1F1 + �2F2))]
+tr[((�1GT1 + �2G

T
2 )(�1G1 + �2G2))⊗ ((�1FT1 + �2FT2 )(�1F1 + �2F2))]

= tr(GT1G1) tr(F
T
1 F1) + tr(G

T
1G2) tr(F

T
1 F2)

+tr(GT2G1) tr(F
T
2 F1) + tr(G

T
2G2) tr(F

T
2 F2)
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−2(�1 tr(GT1G1) + �2 tr(GT1G2))(�1 tr(FT1 F1) + �2 tr(FT1 F2))
−2(�1 tr(GT2G1) + �2 tr(GT2G2))(�1 tr(FT2 F1) + �2 tr(FT2 F2))
+(�1�1 tr(GT1G1) + �1�2 tr(G

T
1G2) + �2�1 tr(G

T
2G1) + �2�2 tr(G

T
2G2))

× (�1�1 tr(FT1 F1) + �1�2 tr(FT1 F2) + �2�1 tr(FT2 F1) + �2�2 tr(FT2 F2))

This problem transformation may seem complicated and its value questionable. However, it
only involves simple matrix operations on the small Gi and Fi matrices. For 16i, j6p, the
trace of each product, GTi Gj and F

T
i Fj must be computed. The trace is an e�cient operation

and can be computed in O(n) time, where n is the size of the matrix. Further, all p2 traces
of GTi Gj need not be computed, since tr(G

T
i Gj)= tr(G

T
j Gi). Thus, only p(p + 1)=2 traces

need to be computed and stored for all Gi and p(p + 1)=2 for all Fi, giving a total of
p(p + 1). Now a nonlinear optimization code can be applied to the above problem to �nd
the 2p unknowns, �1; �2; : : : ; �p; �1; �2; : : : ; �p. In a subsequent paper, we discuss the nonlinear
optimization problem and the computational e�ort required in solving it in greater detail [23].
In this paper, our purpose is to develop the theoretical basis for the NKP preconditioner and
provide a few small examples to give an intuitive understanding of it.

4.1. Small example

The following example illustrates the success of the NKP preconditioner. Given a matrix
R, we want to �nd its nearest Kronecker product in order to form the NKP preconditioner.
Suppose R=

∑3
i=1 Gi ⊗Fi, where

G1 =




0:2582 8:6734 7:3851 2:8985

9:2097 4:1847 0:6726 4:3567

7:0079 2:3194 3:8430 3:2343

1:9009 1:5617 9:4272 8:6374


 ; F1 =

(
6:4076 0:0353

3:1576 2:5790

)

G2 =




0:8921 0:7216 0:7867 0:8677

0:0167 0:6730 0:6087 0:4536

0:0562 0:3465 0:0222 0:5719

0:1458 0:1722 0:4662 0:8215


 ; F2 =

(
0:5706 0:5794

0:5894 0:4318

)

G3 =




0:2388 0:2024 0:8808 0:8426

0:2687 0:2352 0:8311 0:0840

0:7248 0:2522 0:5441 0:6258

0:3165 0:6702 0:8560 0:3328


 ; F3 =

(
0:8064 0:7243

0:6048 0:2875

)
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Then

R=




2:3559 0:6989 56:1511 0:8705 48:4799 1:3541 19:7469 1:2152

1:4854 1:1197 27:9350 22:7388 24:3155 19:6392 10:1732 8:0921

59:2385 0:5290 27:3877 0:7078 5:3271 0:9784 28:2428 0:4773

29:2530 23:8365 13:7526 11:1507 2:9851 2:2364 14:0750 11:4561

45:5207 0:8046 15:2627 0:4652 25:0760 0:5424 21:5551 0:8986

22:5997 18:3062 7:6804 6:2038 12:4768 10:0772 10:9281 8:7682

12:5188 0:3807 10:6455 0:6403 61:3624 1:2225 56:0824 1:0215

6:2797 5:0564 5:4381 4:2947 30:5599 24:7604 27:9590 22:7265




Since R is the ordinary sum of Kronecker products involving two terms, the optimal A= �1G1+
�2G2 + �3G3 and the optimal B=�1F1 + �2F2 + �3F3. Thus, the problem of �nding the near-
est Kronecker product to R reduces to �nding the six coe�cients: �1; �2; �3; �1; �2; �3. We
formulate the nonlinear minimization problem as

min
�; �

‖R− A⊗B‖2F =
∣∣∣∣
∣∣∣∣ 3∑
i=1
Gi ⊗Fi −

(
3∑
i=1
�iGi

)
⊗
(

3∑
i=1
�iFi

)∣∣∣∣
∣∣∣∣
2

F

=

(
3∑
i=1

3∑
j=1
tr(GTi Gj) tr(F

T
i Fj)

)

−2
(

3∑
i=1

[(
3∑
j=1
�j tr(GTi Gj)

)(
3∑
j=1
�j tr(FTi Fj)

)])

+

(
3∑
i=1

3∑
j=1
�i�j tr(GTi Gj)

)(
3∑
i=1

3∑
j=1
�i�j tr(FTi Fj)

)

=31590:01− 2[(509:25�1 + 35:34�2 + 75:04�3)

× (57:68�1 + 13:30�2 + 7:84�3)

+(35:34�1 + 5:11�2 + 7:64�3)(13:30�1 + 4:78�2 + 2:72�3)

+(75:04�1 + 7:64�2 + 20:31�3)(7:84�1 + 2:72�2 + 1:62�3)]

+(509:25�21 + 35:34�1�2 + 75:04�1�3 + 35:34�2�1 + 5:11�
2
2

+7:64�2�3 + 75:04�3�1 + 7:64�3�2 + 20:31�23)
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× (57:68�21 + 13:30�1�2 + 7:84�1�3 + 13:30�2�1 + 4:78�22
+2:72�2�3 + 7:84�3�1 + 2:72�3�2 + 1:62�23)

Using the nonlinear optimization software, multilevel coordinate search (MCS) [24] with
the termination criterion of stopping after 60 successive iterates are identical, the optimal
�=[0:6871 0:0800 0:0943]T and �=[1:4290 0:1005 0:1066]T were found in a fraction of a
second. Therefore, the optimal NKP matrices, A and B, are

A=




0:2713 6:0364 5:2203 2:1404

6:3547 2:9514 0:5892 3:0377

4:8881 1:6452 2:6937 2:3271

1:3476 1:1500 6:5955 6:0319



; B=

(
9:3001 0:1858

4:6360 3:7596

)

And

A⊗B=




2:5228 0:0504 56:1391 1:1214 48:5496 0:9698 19:9061 0:3976

1:2576 1:0198 27:9851 22:6943 24:2017 19:6263 9:9231 8:0471

59:0997 1:1806 27:4479 0:5483 5:4795 0:1095 28:2513 0:5643

29:4609 23:8912 13:6827 11:0959 2:7315 2:2151 14:0832 11:4207

45:4593 0:9081 15:3001 0:3056 25:0512 0:5004 21:6419 0:4323

22:6613 18:3770 7:6270 6:1851 12:4879 10:1270 10:7884 8:7488

12:5332 0:2504 10:6955 0:2137 61:3391 1:2253 56:0975 1:1206

6:2477 5:0666 5:3316 4:3237 30:5773 24:7965 27:9644 22:6775




which may be close enough to the original R to provide the basis for an e�ective precondi-
tioner. We now check how well M =A−1 ⊗B−1 (the NKP preconditioner) works. We solve
the linear system Rx= b. Arbitrarily choosing b= e (where e is the vector of all 1’s) and
using GMRES(5) [4, 25] with the termination criterion that the norm of the residual is less
than 10−8, the unpreconditioned system converges in 33 iterations. The NKP preconditioned
system with GMRES converges to the solution in two iterations. The NKP preconditioner
also compared favourably with other preconditioners. For example, the threshold-based ILU
preconditioner [4], with a threshold of 0.01, converged in one iteration. But, the NKP precon-
ditioner requires less storage than the ILU preconditioner. The NKP preconditioner stores only
the p× 1 vectors for �i and �i and A−1 and B−1. On the other hand, the ILU preconditioner
stores the approximate L;U factors of R, which are triangular matrices of the same order as R.
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The preconditioned matrix MR is equal to

MR=




1:0024 −0:0048 −0:0006 0:0020 0:0015 −0:0036 −0:0018 0:0109

−0:0088 1:0004 0:0025 −0:0015 −0:0058 0:0012 0:0094 −0:0138
−0:0018 0:0013 1:0004 −0:0077 −0:0047 0:0202 −0:0010 0:0033

0:0057 0:0040 −0:0040 1:0131 0:0216 −0:0204 0:0042 −0:0025
−0:0030 0:0199 0:0005 −0:0002 1:0061 −0:0249 −0:0046 0:0270

0:0163 −0:0264 −0:0017 −0:0015 −0:0276 1:0242 0:0237 −0:0338
0:0028 −0:0186 −0:0015 0:0091 −0:0057 0:0242 1:0053 −0:0345

−0:0151 0:0246 0:0080 −0:0114 0:0260 −0:0244 −0:0287 1:0450




The ideal preconditioned matrix is the identity. The NKP preconditioned matrix follows the
pattern of the identity matrix with ‖I −MR‖F =0:1565. Rough estimates of the inverse give
good results for preconditioners [26] as our results demonstrate. The eigenvalue distribution
of the preconditioned system is another factor that explains the quick convergence of the
NKP preconditioned system. The eigenvalues of the NKP preconditioned system are clustered
about 1, a desirable convergence property for GMRES. In the nonlinear minimization problem,
spending more time searching for �i and �i results in a more accurate NKP, so A⊗B is a
better approximation to R. And consequently, for well-conditioned problems, M =A−1 ⊗B−1

is a better preconditioner, causing the iterative method to converge in fewer iterations. To
quantify this, let R=A⊗B+ E. Let R be nonsingular and assume the entries in E are small
enough in magnitude to insure that limn→∞ (R−1E)n=0, then by the Neumann series [27]

(R− E)−1 = [R(I − R−1E)]−1 = (I − R−1E)−1R−1 =
∞∑
k=0
[R−1E]kR−1

The �rst-order approximation is

(R− E)−1 ≈R−1 + R−1ER−1

Then the norm of the di�erence between the ideal preconditioned system and the NKP pre-
conditioned system is

‖I − (A⊗B)−1R‖ = ‖I − (R− E)−1R‖

≈ ‖I − (R−1 + R−1ER−1)R‖

= ‖I − (I + R−1E‖= ‖ − R−1E‖

6 ‖R−1‖‖E‖= ‖E‖
‖R‖ ‖R‖‖R−1‖

=
‖E‖
‖R‖ cond(R)
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where cond(R) is the condition number of R. The magni�cation factor cond(R) is counter-
balanced by ‖E‖. A smaller ‖E‖ means the NKP preconditioned system will be closer to the
ideal preconditioned system, provided the system is well-conditioned.
This small example provides hope for solving SAN problems, but, we must ask if this

NKP work can be extended to the case R=Q=
∑T

j=1 ⊗N
i=1Q

(i)
j . (The SAN descriptor Q is

always in this form.) Q is a sum of T Kronecker products where each product involves N
matrices, rather than just two matrices. Since Pitsianis and Van Loan’s work hinges on the
matrix SVD, which expresses R̃ as U�V T and the optimal A and B matrices are derived from
the dominant left and right singular vectors, we need something beyond the matrix SVD to
extend the NKP to SANs. It is now time to look at the work of de Lathauwer.

5. MULTILINEAR ALGEBRA AND THE HIGHER-ORDER SVD

The SAN NKP problem can be written as

min ‖Q − A1 ⊗A2 ⊗ · · · ⊗AN‖2F = min
∣∣∣∣∣
∣∣∣∣∣
T∑
j=1

⊗N
i=1Q

(i)
j − A1 ⊗A2 ⊗ · · · ⊗AN

∣∣∣∣∣
∣∣∣∣∣
2

F

To extend Pitsianis and Van Loan’s method for determining A⊗B, we need: (1) a rear-
rangement Q̃ of Q and (2) a decomposition of Q̃ into something with more terms than
just an SVD. Perhaps to extend beyond the 2-optimal matrix case (A⊗B) to the N -optimal
matrix case (A1 ⊗A2 ⊗ · · · ⊗AN ) we need to extend a two-dimensional linear algebra to an
N -dimensional algebra. This N -dimensional algebra, multilinear algebra, has been studied ex-
tensively by de Lathauwer [28–30].
The fundamental object of multilinear algebra is the tensor. A �rst-order tensor is a vector.

A second-order tensor is a matrix. A third-order tensor can be visually represented as a three-
dimensional box. For example, a third-order tensor R of dimension 3× 2× 4 has elements
labelled (i; j; k) for i=1; 2; 3, j=1; 2, and k=1; 2; 3; 4 and is shown in Figure 1. N th-order
tensors may be too di�cult to visually represent but they exist with each element labelled
similarly, as an N -dimensional vector.
Just as linear algebra operates on matrices and vectors, multilinear algebra operates on

tensors. Multilinear algebra becomes deep very quickly. For more information, see References
[28–30]. Since the material is dense, we extract only what is needed for the SAN NKP
preconditioner. Operations include inner and outer products, scalar products and multiplication
of a tensor by a matrix or vector. For example, the outer product of N vectors results in an
N th-order tensor. This is analogous to the matrix outer product of two vectors, which results
in a second-order tensor, a matrix. Tensors also have rank and an SVD. For the matrix case,
a rank-p matrix can be expressed as sums of outer products of two vectors using the SVD.
The SVD of a tensor is called the higher-order SVD (HOSVD). A rank-1 N th-order tensor
can be expressed as an outer product of N vectors. de Lathauwer uses the HOSVD of an
N th-order tensor R of dimension I1 × I2 × · · · × IN to express a tensor R as a sum of rank-1
tensors,

R=
I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

si1 ; i2 ; :::; iN u
(1)
i1 ◦ u(2)i2 ◦ · · · ◦ u(N )iN
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r(1,1,1 )      r(1,2,1)

r(2,1,1)      r(2,2,1)

r(3,1,1)      r(3,2,1)

r(1,1,2)      r(1,2,2)

r(2,1,2)      r(2,2,2)

r(3,1,2)      r(3,2,2)

r(1,1,3 )      r(1,2,3)

r(2,1,3)      r(2,2,3)

r(3,1,3)      r(3,2,3)

r(3,1,4)      r(3,2,4)

r(2,1,4)      r(2,2,4)

r(1,1,4 )      r(1,2,4)

Figure 1. Third-order tensor R of dimension 3× 2× 4.

+     . . .

u

u

u

i3

i2

i1

(3)

(2)

(1)

R     =     . . .    +           s i1,i2,i3 

Figure 2. Visualization of HOSVD of third-order tensor R.

where u( j)ij is an all-orthogonal [28] Ij × 1 vector for j=1; : : : ; N , the si1 ; i2 ; :::; iN are higher-order
singular values, which need not be positive and ◦ represents the outer product operation. A ma-
trix SVD of a rank-p matrix R can be written as R=

∑p
i=1 �iuiv

T
i . With the HOSVD, a third-

order tensor R of dimension I1 × I2 × I3 can be expressed as
∑I1

i1=1

∑I2
i2=1

∑I3
i3=1 si1 ; i2 ; i3u

(1)
i1 ◦

u(2)i2 ◦ u(3)i3 . See Figure 2, which is taken from Reference [28]. The lines represent the singular
vectors in three-dimensional space.
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5.1. Finding higher-order NKP for a general matrix

We use the HOSVD to �nd a SAN NKP preconditioner. In the �rst step, we extend Pitsianis
and Van Loan’s work to solve the problem, min ‖R − A1 ⊗A2 ⊗ · · · ⊗AN‖2F , for a general
matrix R. We would like to approximate some rearrangement R̃ of R by an outer product of
N vectors (a1 ◦a2 ◦ · · · ◦aN ). In the end, we hope that reversing the vectorizing operation will
give us the optimal approximation matrices A1; A2; : : : ; AN . Knowledge of multilinear algebra
reveals that the rearrangement R̃ of R should be an N th-order tensor since the outer product
of N vectors is an N th-order tensor. Thus, just as in the matrix case A⊗B, we de�ne a
rearrangement operation so that

min ‖R− A1 ⊗A2 ⊗ · · · ⊗AN‖2F = min ‖R̃− a1 ◦ a2 ◦ · · · ◦ aN‖2F

where a1 = vec(A1), a2 = vec(A2); : : : ; aN =vec(AN ), R̃ is an N th-order tensor and a1◦a2◦· · ·◦aN
is a rank-1 N th-order tensor.
First, we de�ne our rearrangement operation. Then, we prove that with this de�nition the

sums of squares in the above equation match. In the most general case, we want to approx-
imate the m1m2 · · ·mN × n1n2 · · · nN matrix R by A1 ⊗A2 ⊗ · · · ⊗AN , where A1 is m1 × n1,
A2 is m2 × n2 and AN is mN × nN . The matrix R consists of m1n1 blocks, each of size
m2 · · ·mN × n2 · · · nN . We label the (i; j) block of R as Ri; j. De�ne a rearrangement operation,
�N (R), which, when applied to a matrix R of dimension m1m2 · · ·mN × n1n2 · · · nN results in
an N th-order tensor R̃ of dimension m1n1 ×m2n2 × · · · ×mNnN . De�ne �N (R) recursively as
follows: vectorize the m1n1 blocks of the matrix R, and then apply �N−1(Ri; j) to each block.
The scalars mi and ni are the user-de�ned dimensions of the NKP matrix Ai. The only re-
striction is that the dimension of the Kronecker product of the NKP matrices A1, A2; : : : AN
match that of R. Pitsianis and Van Loan de�ned �2(R) in Reference [22]. �2(R) takes the
matrix R and transforms it into a 2nd-order tensor so that the sum of squares of ‖R−A⊗B‖
are identical to those of ‖R̃− a ◦ b‖. We now describe �3(R) with an example. Suppose we
approximate R∈ R12× 12 with A⊗B⊗C, where A is 2× 2, B is 2× 2 and C is 3× 3. The
dimensions of A, B and C are arbitrarily chosen with the lone restriction that these dimen-
sions are conformable with the dimension of R. R is then composed of four blocks, each of
size 6× 6. To distinguish between matrix blocks and matrix elements we use the following
notation: matrix blocks are capitalized with subscripted indices while matrix elements are
lowercase with indices in parentheses.

R=
(
R1;1 R1;2
R2;1 R2;2

)

=




r(1; 1) r(1; 2) · · · r(1; 6) r(1; 7) r(1; 8) · · · r(1; 12)
...

. . .
...

...
. . .

...
r(6; 1) r(6; 2) · · · r(6; 6) r(6; 7) r(6; 8) · · · r(6; 12)
r(7; 1) r(7; 2) · · · r(7; 6) r(7; 7) r(7; 8) · · · r(7; 12)
...

. . .
...

...
. . .

...
r(12; 1) r(12; 2) · · · r(12; 6) r(12; 7) r(12; 8) · · · r(12; 12)



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r(7,7)       r(10,7)       r(7,10)       r(10,10)

r(8,7)       r(11,7)       r(8,10)       r(11,10)

r(9,7)       r(12,7)       r(9,10)       r(12,10)

r(7,8)       r(10,8)      r(7,11)      r(10,11)

r(8,8)       r(11,8)       r(8,11)       r(11,11)

r(9,8)       r(12,8)       r(9,11)       r(12,11)

r(7,9)       r(10,9)       r(7,12)       r(10,12)

r(8,9)       r(11,9)       r(8,12)       r(11,12)

r(9,9)       r(12,9)       r(9,12)       r(12,12)

r(1,7)       r(4,7)       r(1,10)       r(4,10)

r(2,7)       r(5,7)       r(2,10)       r(5,10)

r(3,7)       r(6,7)       r(3,10)       r(6,10)

r(1,8)       r(4,8)      r(1,11)      r(4,11)

r(2,8)       r(5,8)       r(2,11)       r(5,11)

r(3,8)       r(6,8)       r(3,11)       r(6,11)

r(1,9)       r(4,9)       r(1,12)       r(4,12)

r(2,9)       r(5,9)       r(2,12)       r(5,12)

r(3,9)       r(6,9)       r(3,12)       r(6,12)

r(7,1)       r(10,1)       r(7,4)       r(10,4)

r(8,1)       r(11,1)       r(8,4)       r(11,4)

r(9,1)       r(12,1)       r(9,4)       r(12,4)

r(7,2)       r(10,2)      r(7,5)      r(10,5)

r(8,2)       r(11,2)       r(8,5)       r(11,5)

r(9,2)       r(12,2)       r(9,5)       r(12,5)

r(7,3)       r(10,3)       r(7,6)       r(10,6)

r(8,3)       r(11,3)       r(8,6)       r(11,6)

r(9,3)       r(12,3)       r(9,6)       r(12,6)

r(1,1)       r(4,1)       r(1,4)       r(4,4)

r(2,1)       r(5,1)       r(2,4)       r(5,4)

r(3,1)       r(6,1)       r(3,4)       r(6,4)

r(1,2)       r(4,2)      r(1,5)      r(4,5)

r(2,2)       r(5,2)       r(2,5)       r(5,5)

r(3,2)       r(6,2)       r(3,5)       r(6,5)

r(1,3)       r(4,3)       r(1,6)       r(4,6)

r(2,3)       r(5,3)       r(2,6)       r(5,6)

r(3,3)       r(6,3)       r(3,6)       r(6,6)

=

Γ2(R1,1)

Γ2(R2,1)

Γ2(R1,2)

Γ2(R2,2)

R = Γ (R)
3

~

Figure 3. Visualization of third-order tensor R̃ of dimension 4× 4× 9.

The rearrangement operation transforms the matrix R into a third-order tensor R̃=�3(R).
�3(R) is a third-order tensor of dimension 4× 4× 9 and is represented in Figure 3.
We now prove that the higher-order rearrangement operation accomplishes the desired trans-

formation.

Theorem 5.1
A1 is an m1 × n1 matrix, A2 is an m2 × n2 matrix and AN is an mN × nN matrix. R is an
m1m2 : : : mN × n1n2 : : : nN matrix. �N (R) is the rearrangement of the matrix R into an N th-order
tensor of dimension m1n1 ×m2n2 × : : : ×mNnN . Then ‖R − A1 ⊗A2 ⊗ · · · ⊗AN‖2F = ‖�N (R) −
a1 ◦ a2 ◦ · · · ◦ aN‖2F , where a1 = vec(A1), a2 = vec(A2), : : :, aN =vec(AN ).
Proof
We prove that ‖R − A1 ⊗A2 ⊗ · · · ⊗AN‖2F = ‖�N (R) − a1 ◦ a2 ◦ · · · ◦ aN‖2F by induction. This
proof uses the fact that an N th-order tensor consists of several N − 1st-order tensors. For the
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base case, we show that ‖R− A1 ⊗A2 ⊗A3‖2F = ‖�3(R)− a1 ◦ a2 ◦ a3‖2F .

‖R− A1 ⊗A2 ⊗A3‖2F =
m1∑
i=1

n1∑
j=1

‖Ri; j − (A1 ⊗A2 ⊗A3)i; j‖2F

=
m1∑
i=1

n1∑
j=1

‖Ri; j − A1i; j(A2 ⊗A3)‖2F

Now we can use the result of Pitsianis and Van Loan which says that ‖R−A1 ⊗A2‖2F = ‖�2(R)−
a1 ◦ a2‖2F .

‖R− A1 ⊗A2 ⊗A3‖2F =
m1∑
i=1

n1∑
j=1

‖�2(Ri; j)− A1i; j(a2 ◦ a3)‖2F

=
m1n1∑
k=1

‖Rk − a1k (a2 ◦ a3)‖2F

= ‖�3(R)− a1 ◦ a2 ◦ a3‖2F

where a1k is the kth element of the m1n1 × 1 vector obtained by the operation vec(A1). Given
that a1k corresponds to the matrix element A1i; j , then Rk is de�ned similarly as the rearrange-
ment of the block matrix Ri; j. The �nal equality comes from the fact that a third-order tensor
�3(R) is actually m1n1 second-order tensors and thus the sum of squares of the third-order
tensor is the same as the sum of the m1n1 sums of squares of the second-order tensors.
For the induction step, we assume ‖R−A1 ⊗A2 ⊗ · · · ⊗AN‖2F = ‖�N (R)−a1 ◦a2 ◦ · · · ◦aN‖2F

and show that ‖R− A1 ⊗A2 ⊗ · · · ⊗AN ⊗AN+1‖2F = ‖�N+1(R)− a1 ◦ a2 ◦ · · · ◦ aN ◦ aN+1‖2F .

‖R− A1 ⊗A2 ⊗ · · · ⊗AN ⊗AN+1‖2F =
m1∑
i=1

n1∑
j=1

‖Ri; j − (A1 ⊗A2 ⊗ · · · ⊗AN+1)i; j‖2F

=
m1∑
i=1

n1∑
j=1

‖Ri; j − A1i; j(A2 ⊗A3 ⊗ · · · ⊗AN+1)‖2F

=
m1∑
i=1

n1∑
j=1

‖�N (Ri; j)− A1i; j(a2 ◦ a3 ◦ · · · ◦ aN+1)‖2F

=
m1n1∑
k=1

‖Rk − a1k (a2 ◦ a3 ◦ · · · ◦ aN+1)‖2F

= ‖�N+1(R)− a1 ◦ a2 ◦ · · · ◦ aN+1‖2F

In the two-dimensional matrix case we approximate the matrix R̃ by the outer product of
two vectors (a ◦b= abT). The truncated SVD provided the optimal a; b vectors for the rank-1
approximation problem. Unfortunately, we now discover an important di�erence between mul-
tilinear algebra and linear algebra. de Lathauwer proves that, unlike the matrix case, the
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truncated HOSVD does not provide the best rank-1 approximation of an N th-order tensor.
He provides a complicated algorithm (which requires the formation of the N th-order tensor R̃
and a tensor-matrix multiplication algorithm) in Reference [30] that does �nd the best rank-1
approximation of an N th-order tensor. However, de Lathauwer also states that, while the trun-
cated HOSVD does not provide the best rank-1 approximation, it does generally provide a
good rank-1 approximation. Thus, using the truncated HOSVD we have

a1 ≈ s1;1; :::;1u(1)1
a2 ≈ u(2)1
...

aN ≈ u(N )1

where s1;1; :::;1 is the �rst pseudosingular value of R̃, and u
( j)
1 are the �rst singular vectors

of R̃. Then, a1 ◦ a2 ◦ · · · ◦ aN hopefully provides a good rank-1 approximation of the N th-
order tensor R̃. And reversing the vectorizing operation, A1 ⊗A2 ⊗ · · · ⊗AN provides a good
approximation of the original matrix R. Finally, we have the desired result. Although this result
is not as neat and exact as Pitsianis and Van Loan’s optimal two-matrix case, it is a nice
starting approximation. Ultimately, we are only interested in �nding a suitable approximate
preconditioner for SANs.

5.2. Finding higher-order NKP for a SAN matrix

This is all very promising news theoretically, but practically we would rather not form or store
the N th-order tensor R̃. Thus, we now �nd the optimal A1; A2; : : : ; AN matrices without forming
R̃, or �nding the HOSVD of R̃. We extend Pitsianis and Van Loan’s work on matrices with
special structure. The goal is solving the problem min ‖Q−A1 ⊗A2 ⊗ · · · ⊗AN‖2F , where Q is
the SAN descriptor with the special structure,

∑T
j=1 ⊗N

i=1Q
(i)
j . In the optimal two-matrix case

when R=
∑T

j=1 ⊗2
i=1Q

(i)
j , the optimal A and B matrices are linear combinations of the Q

(i)
j

matrices, A= �1Q
(1)
1 + �2Q

(1)
2 + · · ·+ �TQ(1)T and B=�1Q

(2)
1 + �2Q

(2)
2 + · · ·+ �TQ(2)T . Does this

fact extend to A1; A2; : : : ; AN? Is A1 = �1Q
(1)
1 + �2Q

(1)
2 + · · · + �TQ(1)T , A2 =�1Q(2)1 + �2Q

(2)
2 +

· · · + �TQ(2)T ; : : : ; and AN = �1Q(N )1 + �2Q
(N )
2 + · · · + �TQ(N )T ? The answer to this question is

‘Yes, approximately’.

Theorem 5.2
Let Q=

∑T
j=1 ⊗N

i=1Q
(i)
j be the SAN descriptor. Then the approximate NKP matrices A1,

A2; : : : ; AN such that Q≈A1 ⊗A2 ⊗ · · · ⊗AN follow: A1 ≈ �1Q(1)1 +�2Q(1)2 + · · ·+�TQ(1)T , A2 ≈�1
Q(2)1 + �2Q

(2)
2 + · · ·+ �TQ(2)T ; : : : ; and AN ≈ �1Q(N )1 + �2Q

(N )
2 + · · ·+ �TQ(N )T .

Proof
de Lathauwer has proven that every N th-order tensor R̃ of dimension I1 × I2 × · · · × IN has a
HOSVD:

R̃= S ×1U (1) ×2U (2) ×3 · · · ×N U (N )
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where U (n) = [U (1)
1 U

(2)
2 · · ·U (n)

IN ] is a unitary (IN × IN ) matrix, S is an N th-order tensor of
dimension I1 × I2 × · · · × IN and ×j represents tensor-matrix multiplication along dimension j
as detailed in Reference [28]. Using the unfolding operation in Reference [28], we ‘unfold’
the N th-order tensors into matrices. An N th-order tensor R̃ can be unfolded along any of its
N dimensions. Without loss of generality, suppose R̃ is unfolded along the P(1) dimension
and is represented in matrix terms as

R̃P(1) =U (P(1))S[U (P(2)) ⊗ · · · ⊗U (P(N ))]T

where the unfolded matrix R̃P(1) has dimension IP(1) × IP(2) · · · IP(N ), S has dimension IP(1) × IP(2)
· · · IP(N ) and P(1; 2; : : : ; N ) is a particular permutation of (1; 2; : : : ; N ) with P(i) representing
the ith element of that permutation. Then R̃P(1) has a matrix SVD [28] given by

R̃P(1) =UP(1)�P(1)VP(1)T

where �P(1) has dimension IP(1) × IP(1) and is a diagonal matrix containing the singular values
of the matrix R̃P(1), VP(1) which has dimension IP(2) : : : IP(N ) × IP(1) is an orthogonal matrix
de�ned by VP(1)T = S̃P(1)[UP(2) ⊗ · · · ⊗UP(N )]T. S̃P(1) is a normalized version of the tensor S
unfolded to the matrix SP(1). Speci�cally, SP(1) =�P(1)S̃P(1) [28]. Since VP(1) is orthogonal and
�P(1) is a square diagonal matrix, we can isolate UP(1)

1 , the �rst column of

UP(1)
1 = [R̃P(1)VP(1)(�P(1))−1]1

=
1

s1;1; :::;1
R̃P(1)V

P(1)
1

where 1=s1;1; :::;1 is the (1; 1) – element of the matrix �P(1). Without loss of generality, assume
P(1)=1. Thus,

s1;1; :::;1U
(1)
1 = R̃(1)V

(1)
1

Now we use R̃’s special structure. The original matrix R=
∑T

j=1 ⊗N
i=1Q

(i)
j . Thus, R̃=

∑T
j=1 q

(1)
j

◦ q(2)j ◦ · · · ◦ q(N )j . Unfolding the tensor R̃ into a matrix gives

R̃=
T∑
j=1
q(1)j (q

(2)
j ⊗ · · · ⊗ q(N )j )T

Hence,

s1;1; :::;1U
(1)
1 =

T∑
j=1
q(1)j (q

(2)
j ⊗ · · · ⊗ q(N )j )T[U (P(2)) ⊗ · · · ⊗U (P(N ))]1

Let the scalar product (q(2)j ⊗ · · · ⊗ q(N )j )T[U (P(2)) ⊗ · · · ⊗U (P(N ))]1 = �j. Then s1;1; :::;1U
(1)
1 =∑T

j=1 �1q
(1)
j . Since a1 ≈ s1;1; :::;1U (1)

1 , then a1 is approximately a linear combination of the q
(1)
j s.

Reversing the vectorizing operation gives the desired result; the matrix A1 is approximately a
linear combination of the input matrices Q(1)j s. The proof showing a2 (aN ) is approximately
a linear combination of the q(2)j s (q

(N )
j s) is similar.
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Similar to the two-matrix case, the original N -matrix problem is transformed using the trace
de�nition of the squared Frobenius norm:

‖Q − A1 ⊗A2 ⊗ · · · ⊗AN‖2F

≈
∣∣∣∣∣
∣∣∣∣∣
T∑
j=1

⊗N
i=1Q

(i)
j −

(
T∑
j=1
�jQ

(1)
j

)
⊗
(

T∑
j=1
�jQ

(2)
j

)
⊗ · · · ⊗

(
T∑
j=1
�jQ

(N )
j

)∣∣∣∣∣
∣∣∣∣∣
2

F

=

[
T∑
i=1

T∑
j=1

N∏
k=1
tr(Q(k)Ti Q(k)j )

]
− 2

(
T∑
i=1

[
N∏
k=1

(
T∑
j=1
�(k)j tr(Q(k)Ti Q(k)j )

)])

+
N∏
k=1

[
T∑
i=1

T∑
j=1
�(k)i �

(k)
j tr(Q(k)Ti Q(k)j )

]
(3)

In the above equation, �(1)i = �i, �
(2)
i =�i and �

(N )
i = �i for ease of notation. The unknowns

�1; �2; : : : ; �T ; �1; �2; : : : ; �T ; : : : ; �1; �2; : : : ; �T (that is, all the �
(k)
i s) are chosen so that the above

nonlinear function is minimized. This nonlinear function of NT variables requires the com-
putation and storage of NT (T +1)=2 traces. Clearly, as N , the number of automata increases
or T =2E + N , where E is the number of synchronizing events, grows, this problem trans-
formation becomes impractical.
This drawback relating to the size of the nonlinear optimization problem can be circum-

vented with the results of Plateau and her co-workers. In practical modelling situations there
are typically many automata. However, the number of states in these automata is typically
very small; many have only two states. The large number of automata complicates the anal-
ysis of the model since the number of embedded loops in numerical algorithms will also be
large. Reference [18] shows how the original N automata can be grouped together so that
the number of automata decreases while the size of each automaton increases. Not only does
grouping have the e�ect of speeding up the underlying algorithms, but, in addition, grouping
also reduces the number of synchronizing events and=or functional transitions and thereby
reduces the complexity even further. After grouping the automata suitably, N is often less
than �ve. Practically speaking, �ve grouped automata each of size 100 would enable analy-
sis of huge Markov chains of size 1010. Thus, it is reasonable to expect that after grouping
techniques are used, the nonlinear optimization problem in Equation (3) contains less than 80
unknowns.

5.2.1. Small example A. The remainder of this section deals with applications of the NKP
preconditioner to small arti�cial examples. First, we apply the NKP preconditioner to a non-
singular system with coe�cient matrix Q=

∑T
j=1 ⊗3

i=1Q
(i)
j . Then, we apply the NKP precon-

ditioner to a singular system arising from a small SAN.
For Q=

∑T
j=1 ⊗N

i=1Q
(i)
j , we choose N =3 and T =3. Q=Q

(1)
1 ⊗Q(2)1 ⊗Q(3)1 +Q(1)2 ⊗Q(2)2 ⊗

Q(3)2 + Q(1)3 ⊗Q(2)3 ⊗Q(3)3 . The matrix Q has the SAN structure by design but since the Q(i)j
matrices for i; j=1; 2; 3 are generated randomly, Q is not a SAN. In fact, Q is nonsingular.
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Let

Q(1)1 =



0:1549 0:2041 0:4310 0:7391

0:5258 0:5108 0:4035 0:6140

0:2047 0:3916 0:3058 0:9406

0:1405 0:9370 0:6563 0:1824




Q(1)2 =



3:5242 3:2986 7:2004 2:0621

0:9998 0:3773 6:5241 7:2157

3:3705 0:7920 1:3297 4:3136

8:7454 0:3342 7:9736 9:2875




Q(1)3 =



0:4327 0:2142 0:2849 0:0558

0:6124 0:4113 0:9867 0:5043

0:3487 0:5132 0:2643 0:7546

0:8989 0:0215 0:1360 0:9965




Q(2)1 =



1:6892 1:0948 0:9524

1:7891 0:8469 1:1813

0:0423 1:0725 1:6771


 ; Q(3)1 =

(
0:0590 0:6475

0:7470 0:1842

)

Q(2)2 =



0:6287 0:1407 0:7140

0:3458 0:9492 0:9294

0:7252 0:5216 0:0723


 ; Q(3)2 =

(
1:5063 1:0292

0:0452 2:6041

)

Q(2)3 =



2:7855 3:1636 4:9718

1:2599 0:4099 1:3927

0:6731 3:3888 1:5116


 ; Q(3)3 =

(
0:2794 0:0892

0:3283 0:5172

)

Since Q is order 24, we only show the upper left block of Q.

Q(1 : 7; 1 : 7)=




3:6900 2:5575 1:1395 0:7423 4:4001 2:8771 3:3112

0:6914 6:4420 0:5986 2:0307 0:9303 7:6925 0:5472

2:0044 1:4823 5:0960 3:5434 5:1132 3:5434 1:8152

0:4411 3:5066 0:3075 8:8268 0:4827 8:8753 0:4129

3:9318 2:6607 3:1883 2:1301 0:5820 0:4889 3:6444

0:2161 6:8078 0:6887 5:5756 0:4204 1:0499 0:1620

1:4760 1:3742 0:7873 0:6904 1:9557 1:3306 0:7284



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To �nd the NKP A1 ⊗A2 ⊗A3 of Q, we use the nonlinear minimization problem of equation
(3). Using the nonlinear optimization software MCS [24], in a fraction of a second we �nd
�=[0:2651 1:304 0:7417]T, �=[0:0180 2:000 0:0346]T and �=[0:0326 0:3379 0:0922]T,
where � is the vector of linear coe�cients for A1, � for A2 and � for A3. The algorithm
terminated after stagnation for 60 successive iterations. Since A1 ≈ �1Q(1)1 + �2Q

(1)
2 + �3Q

(1)
3 ,

A2 ≈�1Q(2)1 + �2Q
(2)
2 + �3Q

(2)
3 and A3 ≈ �1Q(3)1 + �2Q

(3)
2 + �3Q

(3)
3 , we replace the approximation

sign with an equal sign and form

A1 =



4:9593 4:5161 9:7184 2:9273

1:8979 0:9326 9:3496 9:9497

4:7098 1:5176 2:0117 6:4362

12:1123 0:7003 10:6764 12:9030




A2 =



1:3843 0:4106 1:6171

0:7674 1:9277 1:9283

1:4745 1:1797 0:2271


 ; A3 =

(
0:5366 0:3771

0:0699 0:9336

)

Now compare the top left block of the NKP with the original Q matrix.

(A1 ⊗A2 ⊗A3)(1 : 7; 1 : 7)=




3:6841 2:5885 1:0927 0:7678 4:3038 3:0240 3:3548

0:4798 6:4090 0:1423 1:9010 0:5605 7:4871 0:4369

2:0423 1:4350 5:1304 3:6048 5:1320 3:6059 1:8597

0:2660 3:5528 0:6681 8:9251 0:6683 8:9278 0:2422

3:9243 2:7573 3:1395 2:2059 0:6045 0:4247 3:5735

0:5111 6:8268 0:4089 5:4616 0:0787 1:0516 0:4654

1:4098 0:9906 0:4182 0:2938 1:6470 1:1572 0:6928




The NKP is not as close to Q as in the previous two-dimensional example from
Section 7.2.1 but, nevertheless, the NKP preconditioned iteration matrix MQ (where M =A−1

1
⊗A−1

2 ⊗A−1
3 ) is still relatively close to the identity, the ideal preconditioned system for this

nonsingular Q.

MQ(1 : 7; 1 : 7)=




1:0920 −0:0193 −0:0947 −0:0468 −0:0727 −0:0520 0:0201

−0:0583 1:0465 −0:0078 −0:0976 −0:0173 −0:0828 −0:0191
0:0284 0:0121 1:1466 −0:0201 0:0649 −0:0247 0:0163

0:0010 0:0283 −0:0733 1:0891 −0:0346 0:0389 0:0109

−0:0331 −0:0685 0:0113 −0:0052 1:0676 −0:0103 −0:0337
−0:0394 −0:0597 −0:0066 0:0064 −0:0455 1:0317 0:0060

−0:0171 −0:0010 −0:0126 0:0382 −0:0166 0:0460 0:9939



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 ...  ...

C1 Station 1 Station 2
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pµ 

(1-p) µ

C2

ν

Figure 4. SAN queueing network.

Since rough estimates of an approximate inverse often produce e�ective preconditioners
[26], we apply this NKP preconditioner to the well-conditioned system Qx= e to observe its
behaviour. The right-hand side was arbitrarily chosen as e. Unpreconditioned full GMRES
with a termination criterion that the maximum norm of the residual vector be less than 10−8

requires 24 iterations to converge to the solution x, while the NKP preconditioned full GMRES
only takes eight iterations. The ILU preconditioner with a threshold of .01 converges in �ve
iterations. In terms of the number of iterations, the NKP preconditioner compares favourably
with other preconditioners even extending beyond the two-dimensional NKP A1 ⊗A2 to the
three-dimensional NKP A1 ⊗A2 ⊗A3.

5.2.2. Small example B. We apply the NKP preconditioner to a small SAN. Thus, the coef-
�cient matrix is singular with rank n− 1. We apply the various preconditioners of Section 3
to the SAN described in detail in Reference [12]. This example is a small queueing network
consisting of two exponential, �nite-capacity, single server stations. See Figure 4.
Two stochastic automata can be used to model this system, which has one synchronizing

event and no functional transition rates. We choose the following parameters:

�=13; �=15; 	=11; p=0:7; C1 = 9; C2 = 7

This results in a model with 80 states and N =2, E=1.
Below we show the upper left blocks of the three matrices of interest: the SAN descriptor

Q, the nearest Kronecker product A⊗B and the NKP preconditioned iteration matrix MQ,
where M =A−1 ⊗B−1.

Q(1 : 7; 1 : 7) =




−13 0 0 0 0 0 0

11 −24 0 0 0 0 0

0 11 −24 0 0 0 0

0 0 11 −24 0 0 0

0 0 0 11 −24 0 0

0 0 0 0 11 −24 0

0 0 0 0 0 11 −24



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Table I. Number of iterations and CPU times for SAN analysis of queueing network example

Power method GMRES method BiCGSTAB

Preconditioner Iterations Time Iterations Time Iterations Time

None 1020 0.26 18 1.65 48 0.06
Neumann 343 0.24 11 1.08 21 0.09
Indiv. Inv. 683 0.43 9 0.94 26 0.05
Diagonal 811 0.22 16 1.65 46 0.06
NKP 394 0.16 8 0.87 25 0.04
ILU0 177 0.20 9 0.91 15 0.04
ILUTH 57 0.08 6 0.70 3 0.03

(A⊗B)(1 : 7; 1 : 7) =




−18:5676 −0:7431 0 0 0 0 0

6:6589 −25:2265 −0:7431 0 0 0 0

0 6:6589 −25:2265 −0:7431 0 0 0

0 0 6:6589 −25:2265 −0:7431 0 0

0 0 0 6:6589 −25:2265 −0:7431 0

0 0 0 0 6:6589 −25:2265 −0:7431

0 0 0 0 0 6:6589 −25:2265




MQ(1 : 7; 1 : 7) =




0:6708 −0:2429 0:0071 −0:0002 0 0 0

−0:2866 0:8937 −0:1774 0:0052 −0:0002 0 0

−0:0751 −0:2282 0:9109 −0:1779 0:0052 −0:0002 0

−0:0197 −0:0598 −0:2237 0:9108 −0:1779 0:0052 −0:0002

−0:0052 −0:0157 −0:0586 −0:2238 0:9108 −0:1779 0:0052

−0:0013 −0:0041 −0:0154 −0:0586 −0:2238 0:9108 −0:1780

−0:0004 −0:0011 −0:0040 −0:0153 −0:0585 −0:2232 0:9128




The NKP, A⊗B, captures the structure of Q rather well and the elements in the NKP are
close enough to those in Q to give an iteration matrix MQ with a diagonally dominant
banded structure. While one might hope MQ is closer to I − e�, the ideal preconditioned
system for a singular, rank n − 1 system, the NKP preconditioner still serves its purpose of
improving the convergence of the iterative methods. Table I clearly shows the success of the
two-dimensional NKP preconditioner on this SAN. (An NKP preconditioner with N matrices
A1 ⊗A2 ⊗ · · · ⊗AN is called an N -dimensional NKP.) All experiments were performed on an
SUN Ultra 10 workstation running MATLAB programs. The iterative methods used were the
power method, iterative GMRES with restarts and BiCGSTAB. For GMRES, the size of the
subspace was �xed at 10. For the Neumann preconditioner, we set H =2. All iterative proce-
dures stop as soon as the maximum norm of the residual vector becomes smaller than 10−8.
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The NKP preconditioner beats the other SAN preconditioners: the Neumann, the individual
inverse and the diagonal preconditioners. The NKP preconditioner wins in terms of time and,
with the exception of the Neumann preconditioner, it always converges in fewer iterations.
The Neumann preconditioner is known to provide a theoretically good approximation to Q#;
however, it is also known to require a great deal of computation time. In contrast, the NKP
preconditioner is relatively cheap to compute, as is quanti�ed in a subsequent paper [23],
and often reduces the number of iterations drastically. Note that the NKP preconditioner does
quite well in comparison to the ILU preconditioners, which are generally known to be the
best preconditioners for Markov chains. However, the problem with using ILU preconditioners
for SANs is that the approximate L, U factors are hard to obtain due to the structure of
SANs. (Here, for comparison purposes, we simply expanded the SAN descriptor into its two-
dimensional matrix form and found its approximate L, U factors. This was possible due to the
small order of Q.) The NKP preconditioner has no such structural problems; it incorporates
the SAN structure naturally, making it, as is further demonstrated in a subsequent paper, the
leader in SAN preconditioning.

6. CONCLUSION

We have discussed the method for �nding the approximate NKP for any matrix of the form
Q=

∑T
j=1 ⊗N

i=1Q
(i)
j . We used this approximate NKP as the basis for a preconditioner. Testing

on small arti�cial examples, we found several instances where the NKP preconditioner worked
well. While extensive testing on larger matrices, arising most especially from Markov chains
and SANs remains to be done, we have provided the essential theoretical framework for
such practical exploration. Future research might reveal why the NKP works well on some
matrices and not others. Are there speci�c properties of the input matrices, Q(i)j ’s, which will
determine a priori the success of the NKP as a preconditioner? Is there a practical limit on N ,
the number of small matrices in the Kronecker product, for which the approximation of the
NKP becomes too gross? How does the singularity of the in�nitesimal generator matrix Q of a
Markov chain a�ect the formation of the NKP? And �nally, it would be interesting to compare
by means of a small three-dimensional tensor the approximate NKP induced by truncating the
HOSVD with the exact NKP derived from de Lathauwer’s best rank-1 algorithm.
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